index |
---|

1.56 |

1.49 |

1.47 |

1.41 |

1.34 |

1.29 |

1.25 |

1.22 |

1.23 |

1.12 |

1.10 |

1.08 |

During an index of refraction of water laboratory one laboratory group gathered the data in the table.

- __________ What level of measurement is the data?
- __________ Find the sample size n for the data.
- __________ Find the minimum.
- __________ Find the maximum.
- __________ Find the range.
- __________ Find the midrange.
- __________ Find the median.
- __________ Find the mode.
- __________ Find the sample mean x.
- __________ Find the sample standard deviation sx.
- __________ Find the sample coefficient of variation CV.
- ____________________ Calculate the standard error of the mean.
- Calculate the 95% confidence interval for the population mean index of refraction.

p(__________ < μ <__________) = 0.95 - ____________________ The index of refraction of water quoted by textbooks is 1.33. Is 1.33 a possible population mean value based on the data gathered by the lab group?

Confidence interval statistics | |||
---|---|---|---|

Statistic or Parameter | Symbol | Equations | OpenOffice |

Degrees of freedom | df | n-1 | =COUNT(data)-1 |

Find a t_{critical} value from a confidence level c |
t_{c} | =TINV(1-c;df) | |

Standard error of the sample mean | SE | =STDEV(data)/SQRT(sample size n) | |

Calculate a margin of error for the mean E for n < 30 using sx. Should also be used for n ≥ 30. | E | =t_{c}*sx/SQRT(n) | |

Calculate a confidence interval for a population mean μ from a sample mean x and an error tolerance E |
x - E ≤ μ ≤ x + E |