# COMET 2013 Statistical Exploration by High School strata

Disclaimer: All of the recommendations and opinions expressed in this document are solely those of the author and do not in any way reflect the position of the College of Micronesia-FSM.

This report is an exploration of data from the College of Micronesia-FSM spring 2013 entrance COMET with a focus on individual high school and section results. In this report the word "sections" refers to high school sections. The word subsection will be used to refer to the different sections of the COMET entrance instrument.

The overall distribution of the scores on the English subsections had been very stable. In statistics the word "distribution" means the shape of the data plot when plotted as frequencies of occurrence. The following chart is the distribution of scores on the three English subsections for the 1576 students (or candidates) who sat the COMET.



In the past the peak for the vocabulary section was lower than the peak for the comprehension section which in turn is lower than the peak for the essay. This order, vocabulary-comprehension-essay had been stable up until spring 2013.

Spring 2013 new instruments were used for vocabulary and comprehension subsections. The subsections had been based on the Gates AR, the new subsections are based on Nelson-Denny. The order had been explained by noting that comprehension usually exceeds vocabulary for second language speakers. Students working in a second language (L2) tend to do better at comprehension than vocabulary. This author is familiar with this effect. I often know what a sentence means in the Kosraean language without being able to decode and define every single word.

This spring, however, the new vocabulary and comprehension instruments reversed that logic and vocabulary outperformed comprehension. This suggests that the new instruments are measuring in a statistically different manner than past instruments. This is not to imply that there is something wrong with the new instruments, just the observation that they behaved differently than the previous instruments and that year-on-year comparisons of performance are not directly possible.

The college uses score cut-offs for admission, with alternate admission cut-offs to take into account a student possibly not doing well on a single subsection. These alternate criteria were base on the comprehension subsection. In the past the comprehension subsection distributed more normally than the vocabulary subsection. A normal distribution is considered one indicator of a good instrument. This year the vocabulary subsection was more normal and less skewed. The high amount of skew in the comprehension subsection suggest that the subsection did not perform well from a statistical standpoint. The skew also means that small shifts in cut-offs near the peak can have disproportionate impacts on the numbers admitted.

In the past, the high amount of skew in the vocabulary section led to that section not being used in the alternate criteria. This author would not recommend dropping the use of the comprehension subsection for main and alternate critera, but would recommend adding in vocabulary and building a new set of criteria which includes all four subsections. Alternate criteria should allow the "dropping" of the lowest subsection where the other three subsections are sufficiently stronger than the main criteria. This effort should be coupled with recommendations made later in this document.

#### Essay year-on-year

The essay subsection is marked by two graders. The rubric produces a maximum of 25 points. The scores for the two grades are added, producing a score out of 50. Scores above a 40 are generally thought of as being sufficient for admission at the college, but do not guarantee placement in a college level writing course. Average performance on the essay subsection for a given high school is fairly stable year-on-year. The following table provides information for high schools on their year-on-year performance included selected sections.

| Spring 2007 |       | Spring 20 | 08    | Spring 200 | 9     | Spring 20 <sup>4</sup> | 10    | Spring 2012 |       | Spring 2013 |       |
|-------------|-------|-----------|-------|------------|-------|------------------------|-------|-------------|-------|-------------|-------|
| HS essay    | mean  | HS essay  | mean  | HS essay   | mean  | HS essay               | mean  | HS essay    | mean  | HS essay    | mean  |
| Вегеа       | 15.7  | BEREA     | 26.73 | Berea      | 23.33 | BEREA                  | 34    | Вегеа       | 27.21 | Berea       | 25.63 |
| CCA         | 42    | CCA PNI   | 39.25 | CCA        | 45.3  | CCA                    | 40.31 | CCA         | 46.82 | CCA         | 37.25 |
| CHS         | 9.97  | CHS       | 17.04 | CHS        | 15.32 | CHS                    | 13.61 | Chuuk HS    | 18.41 | CHS         | 22.44 |
|             |       |           |       |            |       |                        |       | CHS a1      | 36.82 | CHS a       | 37.96 |
| CSDA        | 20.8  | CSDA      | 28.38 | CSDA       | 32.19 | CSDA                   | 30.6  | ChkSDA      | 25.62 | CSDA        | 30.70 |
| Faichuk     | 4.95  | FHS       | 6.18  | Faichuk    | 5.57  | Faichuuk               | 2.35  | Faichuuk    | 4.87  | Faichuuk    | 4.84  |
| KHS         | 26.91 | KHS       | 25.99 |            |       | KHS                    | 28.72 | KHS         | 33.39 | KHS         | 30.24 |
|             |       |           |       | KHS non-a  | 25.24 |                        |       | N/A         |       | N/A         |       |
| KHS adv     | 37.27 | KHS a1    | 40.71 | KHS adv    | 32.71 | KHS A                  | 40.05 | N/A         |       | N/A         |       |

| Spring 2007 |       | Spring 20 | 08    | Spring 200 | 9     | Spring 20 <sup>-</sup> | 10    | Spring 2012 |       | Spring 2013 |       |
|-------------|-------|-----------|-------|------------|-------|------------------------|-------|-------------|-------|-------------|-------|
| HS essay    | mean  | HS essay  | mean  | HS essay   | mean  | HS essay               | mean  | HS essay    | mean  | HS essay    | mean  |
| KHS a2      | 38.31 | KHS a2    | 29.23 | KHS a2     | 26.76 | KHS B                  | 34.45 | N/A         |       | N/A         |       |
| Mado HS     | 26.36 | MHS       | 24.59 | MHS        | 20.62 | MHS                    | 26.4  | MHS         | 29.86 | MHS         | 30.60 |
|             |       |           |       |            |       |                        |       | MHS a1 (A)  | 37.89 | MHS a       | 33.95 |
|             |       |           |       |            |       |                        |       | MHS a2 (B)  | 32.11 | MHS b       | 28.57 |
| Mizpah      | 21.05 | MCHS      | 20.1  | Mizpah     | 22.91 | MCHS                   | 6.5   | Mizpah      | 18.56 | Mizpah      | 27.89 |
|             |       |           |       |            |       |                        |       | Moch        | 20.95 | Moch        | 21.82 |
| Mortlocks   |       |           | 9.77  |            |       | Mortlock               | 9.38  | Mortlock    | 12.00 | Mortlock    | 11.25 |
| NICHS       | 19.58 | NICHS     | 13.98 |            |       |                        |       |             |       |             |       |
|             |       |           |       |            |       |                        |       |             |       | NCHS        | 21.73 |
| NMS         | 27.75 | NMHS      | 22.58 | NMHS       | 25.07 | NMHS                   | 25.15 | NMHS        | 30.51 | NMHS        | 31.74 |
| NMS a       | 36.74 | NMHS a1   | 30.95 |            |       |                        |       | NMHS a1     | 36.22 | NMHS a1     | 38.92 |
|             |       | NMHS a2   | 22.43 |            |       |                        |       | NMHS a2     | 32.48 | NMHS a2     | 32.46 |
| NMS b       | 23.74 | NMHS b    | 20.2  |            |       | NMHS B                 | 26.8  | NMHS b      | 29.18 | NMHS b      | 28.40 |
| NMS v1      | 19    | NMHS h    | 18.85 |            |       |                        |       |             |       | NMHS v1     | 29.76 |
| NMS v2      | 20.91 | NMHS v    | 18.81 |            |       |                        |       |             |       | NMHS v2     | 28.22 |
| Nukuno      | 12.91 |           |       |            |       | Nukuno                 | 11.89 | Nukuno      | 30.56 |             |       |
| Ohwa        | 23.33 | OCHS      | 16.17 | Ohwa       | 26    | OHWA                   | 30.54 | OHWA        | 34.17 | Ohwa        | 30.70 |
| OIHS        | 21.3  | OIHS      | 18.87 | OIHS       | 18.15 | OIHS                   | 20.09 | OIHS        | 21.41 |             |       |
|             |       | OLMVTS    | 33.56 | OLMS       | 27.33 | OLMCHS                 | 38.43 | OLMCHS      | 35.17 | OLMCHS      | 42.59 |
| PICS        | 25.16 | PICS      | 28.73 | PICS       | 27.44 | PICS                   | 28.02 | PICS        | 32.95 | PICS        | 31.68 |
| PICS a1     | 34.48 |           |       |            |       | PICS a1                | 36.72 | PICS a1     | 40.94 | PICS a1     | 42.53 |
|             |       |           |       |            |       | PICS a2                | 34.69 | PICS a2     | 36.71 | PICS a2     | 36.66 |
| PLHA        | 14.69 | PLHA      | 18.67 | PLHA       | 17.42 | PLHA                   | 24.17 | Pentecostal | 27.86 | PLHA        | 21.04 |
| PSDA        | 37.22 | SDA PNI   | 41    | PSDA       | 38.63 | PSDA                   | 35.66 | PSDA        | 43.24 | PSDA        | 39.32 |
| Saramen     | 28.69 | SARAM     | 37    | Saramen    | 22.7  | SCA                    | 36    | Saramen     | 32.89 | SCA         | 36.63 |
| SNHS        | 14.05 | SNHS      | 8.02  |            |       |                        |       |             |       |             |       |
|             |       | SNHS-F    | 9.18  | SNHSF      | 8.61  | SNHSF                  | 9.83  | SNHS-Fefan  | 13.32 | SNHSF       | 15.76 |
|             |       |           |       | SNHST      | 10.18 |                        |       | SNHS-Tonoas | 7.52  | SNHST       | 12.87 |
| Weipat      |       |           | 5.59  |            |       |                        |       |             |       | Weipat      | 10.42 |
| Weno        | 14.81 | WHS       | 17.65 | Weno       | 14.57 | WHS                    | 20.87 | WenoHS      | 23.67 |             |       |
| Xavier      | 40.27 | XHS       | 43.63 | Xavier     | 44.65 | XAVIER                 | 44.66 | Xavier      | 43.24 | XHS         | 43.98 |
| YSDA        | 40.44 | Yap SDA   | 30    | YSDA       | 28.2  | YSDA                   | 24.2  | YapSDA      | 42.20 | YSDA        | 33.14 |
| YHS         | 23.86 | YHS       | 28.99 | YHS        | 29.33 | YHS                    | 26.86 | YapHS       | 30.06 | YHS         | 34.13 |
| Overall     | 22.03 | Overall   | 24.35 | Overall    | 23.21 | Overall                | 24.16 | Overall     | 27.54 | Overall     | 27.60 |

The above table also doubles as a partial key to the high school abbreviations used in this document.

While the high schools tend to attempt to measure their performance based on the number of students admitted to the different programs at the college, this is not a useful way to measure the performance of the high schools. The college makes admission decisions based on a variety of factors that do not necessarily reflect the capabilities of the candidates. If the high schools choose to use the COMET at all, then high schools should track their average performance by section and look for improvements in those measures.

### High schools and sections in descending rank order on the four subsections

The following table lists the high schools in descending rank order of the average for each of the four subsections of the COMET: essay, vocabulary, comprehension, and mathematics. Section codes are those chosen by the high school. For high schools that provided section lists, there were in some instances students who were not listed. Those students are gathered together in a single letter-less section. High schools that did not provide section lists are listed by their overall high school average.

| HS      | Essay | HS      | Vocab | HS      | Comp  | HS      | Math  |
|---------|-------|---------|-------|---------|-------|---------|-------|
| XHS     | 43.98 | SDAY    | 40.57 | XHS     | 28.73 | NMHS a1 | 33.19 |
| OLMCHS  | 42.59 | XHS     | 40.10 | CCA     | 28.25 | NMHS a2 | 30.88 |
| PICS a1 | 42.53 | CCA     | 39.75 | SDAY    | 25.64 | PICS a1 | 29.37 |
| PSDA    | 39.32 | PSDA    | 33.59 | PSDA    | 24.55 | XHS     | 29.28 |
| NMHS a1 | 38.92 | PICS a1 | 29.70 | OLMCHS  | 24.27 | MHS a   | 28.05 |
| CHS a   | 37.96 | OLMCHS  | 29.18 | PICS a1 | 23.37 | CCA     | 27.50 |
| CCA     | 37.25 | PICS b1 | 27.43 | NMHS a1 | 20.81 | Вегеа   | 26.37 |
| PICS a2 | 36.66 | YHS     | 26.10 | CSDA    | 20.70 | SDAY    | 25.57 |
| SCA     | 36.63 | YSC     | 25.79 | PICS b1 | 20.43 | PICS a2 | 25.53 |
| PICS b1 | 36.22 | SCA     | 25.69 | SCA     | 20.06 | OLMCHS  | 25.36 |
| PICS a4 | 35.97 | NMHS a1 | 25.50 | PICS a2 | 19.78 | NMHS b  | 24.72 |
| MHS ag  | 35.50 | PICS v2 | 25.00 | MHS a   | 19.48 | NMHS v2 | 24.26 |
| YHS     | 34.13 | Вегеа   | 24.74 | YHS     | 19.29 | MHS ag  | 23.17 |
| MHS a   | 33.86 | PICS a2 | 24.59 | PICS a3 | 19.10 | MHS b   | 22.90 |
| SDAY    | 33.14 | MHS a   | 24.29 | MHS ag  | 18.17 | PSDA    | 22.59 |
| MHS d   | 33.00 | NMHS a2 | 22.58 | PICS a4 | 17.86 | PICS b1 | 22.26 |
| MHS ti  | 32.70 | MHS ti  | 22.40 | NMHS a2 | 17.85 | PICS a3 | 22.20 |
| NMHS a2 | 32.46 | PICS a4 | 22.11 | MHS ti  | 17.20 | PLHA    | 21.78 |
| MHS u   | 32.00 | CSDA    | 22.00 | PICS u  | 17.20 | PICS a4 | 21.49 |
| PICS b4 | 31.64 | NMHS b  | 22.00 | кнѕ     | 16.95 | PICS u  | 21.10 |
| YSC     | 31.00 | PICS u  | 22.00 | Вегеа   | 16.89 | Ohwa    | 20.83 |
| СНЅ Ь   | 30.81 | MHS ag  | 21.83 | CHS a   | 16.71 | KHS     | 20.79 |
| PICS b2 | 30.71 | CHS a   | 21.63 | Mizpah  | 16.67 | MHS ti  | 20.50 |
| CSDA    | 30.70 | PSC     | 21.61 | Ohwa    | 16.65 | SCA     | 20.31 |
| Ohwa    | 30.70 | KHS     | 21.40 | NMHS v2 | 16.39 | MHS d   | 20.00 |
| PICS v1 | 30.33 | PICS a3 | 21.30 | YSC     | 16.37 | NMHS v1 | 19.95 |
| MHS au  | 30.25 | MHS u   | 21.25 | NMHS b  | 16.28 | MHS ha  | 19.88 |
| КНЅ     | 30.24 | PICS    | 21.23 | PSC     | 16.25 | MHS c   | 19.50 |
| NMHS v1 | 29.76 | MHS b   | 21.19 | MHS b   | 16.05 | PSC     | 19.25 |
| MHS b   | 28.57 | NMHS v2 | 21.17 | PICS b2 | 15.13 | YHS     | 19.10 |

| HS       | Essay | HS       | Vocab | HS       | Comp  | HS       | Math  |
|----------|-------|----------|-------|----------|-------|----------|-------|
| CSC      | 28.56 | MHS c    | 20.67 | PICS     | 15.12 | MHS au   | 19.08 |
| NMHS b   | 28.40 | MHS au   | 19.75 | MHS au   | 14.83 | PICS     | 18.69 |
| PICS a3  | 28.30 | NMHS v1  | 19.67 | MHS c    | 14.67 | PICS v2  | 18.63 |
| NMHS v2  | 28.22 | PICS b2  | 19.58 | MHS ha   | 14.38 | Moch     | 18.23 |
| Mizpah   | 27.89 | Ohwa     | 19.48 | PLHA     | 14.35 | PICS v3  | 18.00 |
| MHS c    | 27.56 | PLHA     | 19.43 | NMHS v1  | 14.29 | PICS v1  | 17.93 |
| MHS ha   | 27.50 | Mortlock | 18.67 | PICS a5  | 14.29 | PICS b2  | 17.58 |
| PICS a5  | 27.29 | PICS b3  | 18.67 | Moch     | 13.91 | PICS b3  | 17.13 |
| PICS     | 27.27 | PICS a5  | 18.43 | PICS v1  | 13.87 | YSC      | 17.05 |
| PSC      | 27.02 | PICS v1  | 18.40 | PICS b4  | 13.14 | PICS a5  | 16.04 |
| PICS b3  | 26.27 | Moch     | 17.86 | MHS d    | 13.00 | MHS u    | 16.00 |
| Вегеа    | 25.63 | PICS v3  | 17.64 | MHS u    | 13.00 | CHS a    | 15.58 |
| PICS v2  | 25.25 | CSC      | 17.36 | PICS v2  | 13.00 | PICS b4  | 14.71 |
| PICS v3  | 24.36 | Mizpah   | 17.33 | CSC      | 12.00 | CSDA     | 14.70 |
| PICS u   | 24.30 | SNHST    | 17.17 | PICS v3  | 11.36 | CSC      | 14.28 |
| Moch     | 21.82 | MHS d    | 17.00 | CHS      | 11.14 | Mortlock | 13.83 |
| NCHS     | 21.73 | Weipat   | 16.73 | PICS b3  | 10.93 | CHS      | 12.52 |
| PLHA     | 21.04 | CHS b    | 16.70 | CHS b    | 10.93 | CHS b    | 11.89 |
| CHS      | 19.59 | PICS b4  | 16.29 | Mortlock | 10.83 | SNHST    | 11.77 |
| SNHSF    | 15.76 | Faichuuk | 16.26 | SNHST    | 10.83 | Mizpah   | 11.22 |
| SNHST    | 12.87 | MHS ha   | 16.25 | Faichuuk | 9.68  | NCHS     | 10.50 |
| Mortlock | 11.25 | CHS      | 16.06 | NCHS     | 9.55  | Weipat   | 10.00 |
| Weipat   | 10.42 | NCHS     | 15.55 | Weipat   | 9.19  | SNHSF    | 9.36  |
| Faichuuk | 4.84  | SNHSF    | 14.36 | SNHSF    | 8.86  | Faichuuk | 8.68  |

At PICS the "a" sections are academic, the "b" sections are business, and the "v" sections are vocational. At MHS the a and b sections are academic sections. MHS c has, in the past, been their business section. MHS also has sections for trades and industry (ti), auto mechanics (au), agriculture (ag), and home arts (ha).

The rank order of the schools provides the basis for suggesting that the college can and should move beyond examining only the COMET. Students from the top sections in the nation, whether a private school student such as a Xavier student or a public school student such as a PICS A1 student, have been prepared to succeed in college. These students have the necessary study skills and foundational knowledge. A one day, single event, high stakes instrument, will not accurately measure the probability of success for these students. Conversely, a one day, single event instrument may admit a student to a program whose academic record in high school suggests little chance of successful completion of the program. A mix of the COMET, academic record, and high school program (section) can and should be intelligently used to admit students to programs.

Used alone the COMET can never as accurately produce a "list" of "able-to-benefit" students as the processes that the secondary schools have used over a period of four years to select students into sections. The higher the academic capability of the student, the

greater the risk of programmatic under-placement by the COMET: if a student is degree program capable, then the COMET can only under-place that student.

Of note in the preceding table is the strong performance of the public high schools on Pohnpei in the mathematics sections of the COMET. By rank order the top three sections are Pohnpei public school sections, and two more appear in the top ten.

The author worked with Madolehnihmw high school instructors this past year. The students at MHS tackled algebra and trigonometry, having already completed algebra I and algebra II. Although MHS did extremely well on the math subsection, this author suspects that their scores might have been depressed in part because the students had moved well beyond the material on the COMET. The COMET does not want to become the vehicle to which the schools teach down to. Again, not valuing the course work that students complete in their high school including their grades in those courses, leads to misplaced students.

The placement of students from schools and sections that included algebra II in and higher levels of mathematics suggest that the mathematics subsection does not accurately place these academically more prepared students.

| <b>High School Section</b> | MS 095 | MS 096 | MS 099 | MS 100 | MS 101 |
|----------------------------|--------|--------|--------|--------|--------|
| MHS a                      | 1      | 3      | 7      | 5      | 5      |
| PICS a1                    |        | 4      | 7      | 8      | 11     |
| PSDA                       | 7      | 3      | 5      | 4      | 3      |
| XHS                        |        | 2      | 10     | 16     | 12     |

The mathematics subsection was designed to assist in sorting out weaker students with less preparation. Transcripts should be used for placing academically prepared students coming from programs with up to four years of high school mathematics.

### Essay median rank order

For smaller sample sizes extreme values affect the mean more than the median. The following box plot ranks the top ten high school sections as ranked by median. Box plots provide a graphical view of the score distribution. The lower whisker is usually the minimum value in the data set. The lower end of the box is the first quartile, the median is the line in the box, and the upper end of the box is the third quartile. The upper whisker extends to the maximum in the set.

Outliers, seen as isolated circles on a box plot, are segregated from the box and whisker if a data value is beyond 1.5 times the interquartile range (first minus third quartile). Extreme outliers, denoted by an open circle, are data values beyond 3 times the interquartile range. The outliers are calculated from the data values at the first and third quartiles.



On a median basis Our Lady of Mercy Catholic High School was first rank (44), with Xavier at second (43.5) and PICS section A1 ranked third (43). The differences in these three medians is not statistically significant. Pohnpei SDA at fourth rank (42) is the last of the four schools with a median score above 40 on the essay. A 42 or above on the essay is one of the alternate admission cut-offs for the college. Students with a 42 or higher are permitted a slightly lower comprehension and mathematics score.

# Upward Bound

Upward Bound is a TRIO program operated by the college. The following table provides the average performance for the Upward Bound seniors on the four subsections of the COMET.

| Subsection              | Pohnpei UB | Yap UB |
|-------------------------|------------|--------|
| Essay                   | 40.82      | 36.60  |
| Vocabulary              | 27.22      | 30.83  |
| Comprehension           | 22.91      | 22.38  |
| Mathematics average sum | 29.35      | 26.33  |

The following table indicates where in the rank table the above scores would place the Upward Bound students among the high school sections list earlier in the document.

| Subsection              | Pohnpei UB | Yap UB |
|-------------------------|------------|--------|
| Essay                   | 4          | 10     |
| Vocabulary              | 8          | 3      |
| Comprehension           | 6          | 6      |
| Mathematics average sum | 4          | 8      |

The position in rank order provides suggestions on areas that the Upward Bound students are likely to be able to improve vis-a-vis their peer groups. Pohnpei Upward Bound have room to improve vocabulary and comprehension while Yap Upward Bound might benefit from an increased focus on writing and mathematics skills.

### Recommendations

- The Recruitment, Admissions, and Retention committee should consider taking into account the candidate's high school, high school class, the GPA, courses successfully completed, in combination with the COMET scores. The college could accomplish this by requiring complete transcripts from each applicant.
- The college should continue to work with the Pohnpei Department of Education, the leadership at the Pohnpei high schools, and the mathematics instructors at those high schools to better transition students from the high schools to the college. This effort should include the annual production analyses such as this one which looks at performance by high school section. In addition, this effort should be expanded to other states utilizing the presence of the college in each state to make contacts and hold information sharing meetings.
- Retain the comprehension subsection for main and alternate critera, but add in the vocabulary subsection, building new sets of criteria which includes all four subsections. Alternate criteria might allow the "dropping" of the lowest subsection where the other three subsections are sufficiently stronger than the main criteria.
- As the COMET tends to drive curricular choices in the FSM, sections covering the natural and social sciences should be considered for addition to the COMET.
- When and where possible, statistical analysis of the COMET including section analysis should precede admissions decisions.

### Acknowledgements

The author thanks the College of Micronesia-FSM for their providing the data that forms the basis of this report. The author is also in debt to the departments of education and principals who have shared the section lists that make this report possible.

### Author and contact information

All errors are solely those of the author. All opinions and recommendations are solely those of the author. Please contact Dana Lee Ling at dleeling@comfsm.fm or 691-320-2480 extension 228 if you have questions, corrections, or unmet data needs in regards the COMET instrument. If there is break-out aggregate data you require such as class level data not broken out above, please send the author a list of the names of the students/candidates and the author can generate the aggregate statistics for those students/candidates.