What's New?
(February 2009)

Metal-Eating Bacteria Corrode Pipes in Oil Industry

Calgary (09/25/04)- Researchers are unraveling the details of just how certain types of bacteria are able to use iron in their metabolic processes, and cause corrosion in oil pipelines. All this thanks to the recent sequencing of the genome for Desulfovibrio vulgaris. This bacterium is a type of anaerobic prokaryote known as sulfate-reducing bacteria (SRB), which changes sulfate to sulfide as part of its normal metabolism and respiration.

SRBs are found throughout the environment in soil, marshy lands and marine sediment. They play a vital role in the global cycling and transport of sulfur and other elements. Some varieties of SRB create a slimy biofilm on the inside of natural gas and oil pipelines, creating a narrowing of the pipe as well as corrosion. The corrosion, caused by the bacteria utilizing the metal for its sulfide production, creates damage that is both extensive and costly in the oil and natural gas industries.

The biofilms form because the bacteria are essentially fishing for food, according to Gerrit Voordouw, PhD, professor of microbiology at the University of Calgary. He points out that the inside of a pipeline has few nutrients for bacteria, but they have adapted to become more efficient at harvesting the sulfates they need.

"When an environment is nutrient poor and is flowing, it's a good idea to attach to a surface. That way, you are exposed to more goodies than when you flow with the flow," he said. He likened it to the way some bacteria attach themselves to rocks in Alpine streams where almost pure water offers little food. "If the bacterium was suspended in the stream, it would just float with the water and not get any nutrients. But if it attaches to a rock, forms a biofilm and the water flows past, it can sample a high amount of water," he said.

What SRBs need from their environment are sulfates, which they chemically turn into, or "reduce" into sulfide as part of their metabolic and anaerobic processes. They also take up hydrogen atoms (some of which are available from the pipe itself) which are used on the reducing process.

In order to reduce sulfate into sulfide, the bacteria must facilitate a chemical reaction that adds electrons to the sulfate. To do this, electrons are taken from hydrogen or other donors such as iron in the pipe.

"If you put a piece of metallic iron into a culture of these bacteria in a petri dish, it corrodes very rapidly," Dr. Voordouw said. The removal of electrons weakens the metal, and the steps the bacteria took to accomplish this were a mystery until now. Now that the genome has been sequenced (there are more than 3.5 million base pairs), researchers can unravel the actual mechanisms of how the bacteria can perform chemical reduction of metals -- and weaken pipes. The things being learned about the D. vulgaris genome are applicable to other SRBs.

The genome sequencing project was spearheaded by researchers at The Institute for Genomic Research (TIGR) in Rockville, Maryland, and Dr. Voordouw was one of two Canadian members on the team. Researchers found there is a specific group of proteins that allow the organism to use iron as a source of electrons for its metabolic processes. These proteins are a specialized group of c-type cytochromes which facilitate the transfer of electrons (from the metal to sulfate) and cause the chemical reduction of metals.

Identifying the proteins is important because there are a numerous practical applications for the information, in addition to finding ways to protect pipelines and equipment. For one, the ability of SRBs to reduce metals has implications for cleaning-up land contaminated with toxic metals such as chromium and uranium.

"These elements have a water soluble form that can migrate easily throughout the environment. They also have an insoluble form that does not migrate very well," he said. The water-soluble form of the toxic metals gets into the water table and the contamination can spread for a long distance, while insoluble forms are not transported through the environment as easily.

The insoluble forms of metal ions have been chemically reduced, that is have had electrons added to them. These additional electrons change the toxic metals' chemical features making them less reactive. The key for the field of bioremediation is that SRBs can chemically reduce metal contaminants.

"By reducing these metal ions (such as chromium) into their more insoluble forms, SRBs can contribute to a decrease in the spread of these metal ions in the environment," he said. SRBs won't get rid of metal contaminants, but they do alter some of their chemical characteristics for the better.


Source:
http://www.accessexcellence.org/WN/SU/bactercorrode.php