Worksheet -- Section 5.3 -- Properties of Logarithms

- 1. a) Find the change-of-base formula in the book and write it here:
 - b) Use the formula to convert $log_4(5)$ to base 10:

Evaluate the expression:

c) Use the formula to convert $log_4(5)$ to base e:

Evaluate the expression:

- 2. Expand the following expressions so that the input to each logarithm is a single letter or number:
 - a) log(6x)

b) $log(x^2)$

c) $\log(6 x^2)$

d) $\log(6 x^2 y)$

e) $\log(\frac{x}{y})$

f) $\log(\frac{x}{y^2})$

g) $\log(\sqrt{x})$

- h) $\log(\sqrt{xy})$
- 3. Condense the following expressions to a single logarithm:
 - a) log(x) + log(5)

b) $\log(x) + \log(x) + \log(x)$

c) $\log(5) + 2 \log(x)$

d) $log(7) - log(\frac{1}{x^2}) + log(y)$

e) $\frac{\log(x)}{2}$

f) $\log(x) - \log(y^2)$

- 4. Find the exact value without your calculator:
 - a) $\log_4(16^{1.6})$

b) $log_5(150) - log_5(6)$

c) $\ln(e^4) - \log_e(e^2)$

d) log(1)