MS 101 Sample Test 2 (Section 5.5)

$$
A=P e^{r t} \quad A=P\left(1+\frac{r}{n}\right)^{n t} \quad P=P_{0} e^{k t} \quad Q=Q_{0} e^{k t}
$$

Solutions can be found at the bottom of this file.

1. (06 pts) $\$ 1250$ is invested at an APR of 6% compounded continuously.
a) What is the value after 15 years?
b) How long will it take for the investment to double in value?
2. (06 pts) $\$ 1300$ is invested and compounded continuously. After 13 years the investment has doubled.

Find the value r (4 decimals) in the model and express it as an APR(annual percentage rate).
$r=$ \qquad
03. (04 pts) The population of Shanty Town can be modeled by $P=1500 e^{.017 t}$ where $t=0$ represents year 2000 and P is the number of people. What will the population be in the year 2007?

POPULATION = \qquad (round to the nearest whole number)
04. (04 pts) The population of Shankstown can be modeled by $P=1500 e^{k t}$ where $t=0$ represents year 1990. In 2005 the population was 1700 people. Find k (the continuous growth rate).
$k=$ \qquad
(4 decimals)
05. (06 pts) The number of bacteria in a petri dish is modeled by $N=N_{0} e^{k t}$ where t is in days and N is the number of bacteria. On day 2 there are 2,000 bacteria and on day 7 there are 12,000 bacteria.
Find N_{0} and k and write the model as an equation.
$k=$ \qquad
(4 decimals)
$N_{0}=$ \qquad
(2 decimals)

THE MODEL: \qquad (This is an equation.)
06. (04 pts) A radioactive isotope decays according to $Q=14 e^{k t}$ and has a half-life of 2,707 years. Find the vaue of k.

$$
k=\frac{}{(6 \text { decimals })}
$$

7. (04 pts) What is the half-life of a decaying substance if the initial amount present is 9 grams and there are 2 grams left after 19,000 years:
```
half-life =
```

\qquad
08. (06 pts) Depreciation. Suppose you buy a new car. The car's value decreases according to $V=15000 e^{-.0375 t}$ where V value of the car(in dollars) and t is the age of the car (in years).
a) What the price you paid for the car?
b) Suppose you want to sell the car when it value has decreased to $\$ 9,000$. What will be the age of the car then?

1. (06 pts) $\$ 1250$ is invested at an APR of 6% compounded continuously.
a) What is the value after 15 years? $\quad 1250 e^{(.06 * 15)}=\$ 3,074.50$
b) How long will it take for the investment to double in value?

$$
\begin{aligned}
& 2500=1250 e^{(.06 * t)} \\
& \frac{2500}{1250}=\frac{1250 e^{(.06 * t)}}{1250} \\
& 2=e^{(.06 * t)} \\
& \ln (2)=\ln \left(e^{(.06 * t)}\right) \\
& \ln (2)=.06 * t \\
& \frac{\ln (2)}{.06}=t \approx 11.55 \text { years }
\end{aligned}
$$

2. (06 pts) $\$ 1300$ is invested and compounded continuously. After 13 years the investment has doubled.

Find the value r (4 decimals) in the model and express it as an APR(annual percentage rate).

$$
\begin{aligned}
& r=\ldots 0.0533 \ldots \quad \text { APR }=\ldots 5.33 \% \\
& 2600=1300 e^{(r * 13)} \\
& \frac{2600}{1300}=\frac{1300 e^{(r \times 13)}}{1300} \\
& 2=e^{(r * 13)} \\
& \ln (2)=\ln \left(e^{(r * 13)}\right) \\
& \ln (2)=r * 13 \\
& \frac{\ln (2)}{13}=r \approx 0.0533=5.33 \%
\end{aligned}
$$

3. (04 pts) The population of Shanty Town can be modeled by $P=1500 e^{.017 t}$ where $t=0$ represents year 2000 and P is the number of people. What will the population be in the year 2007?

POPULATION = __1690 people___ (round to the nearest whole number) $P=1500 e^{0.017 * 7} \approx 1690$ people
04. (04 pts) The population of Shankstown can be modeled by $P=1500 e^{k t}$ where $t=0$ represents year 1990. In 2005 the population was 1700 people. Find k (the continuous growth rate).
$k=$ \qquad 0.0083 \qquad (4 decimals)
$1700=1500 e^{k * 15}$

$$
\begin{aligned}
& \frac{1700}{1500}=\frac{1500 e^{k * 15}}{1500} \\
& \frac{1700}{1500}=e^{k * 15} \\
& \ln \left(\frac{1700}{1500}\right)=\ln \left(e^{k * 15}\right) \\
& \ln \left(\frac{1700}{1500}\right)=k * 15 \\
& \frac{\ln \left(\frac{1700}{1500}\right)}{15}=k \approx 0.0083
\end{aligned}
$$

5. (06 pts) The number of bacteria in a petri dish is modeled by $N=N_{0} e^{k t}$ where t is in days and N is the number of bacteria. On day 2 there are 2,000 bacteria and on day 7 there are 12,000 bacteria.
Find N_{0} and k and write the model as an equation.
$k=$ \qquad 0.3584 \qquad $N_{0}=$ \qquad 976.39 \qquad THE MODEL: \qquad $N=976.39 e^{0.3584 t}$ \qquad (This is an equation.)
(4 decimals)
(2 decimals)

You can write two equations with the two given data points:

$$
\begin{array}{cc}
(2,2000) & (7,12000) \\
2000=N_{0} e^{k \cdot 2} & \text { and } \quad 12000=N_{0} e^{k \cdot 7}
\end{array}
$$

Divide the equations:

$$
\begin{aligned}
& \frac{12000}{2000}=\frac{N_{0} e^{k \cdot 7}}{N_{0} e^{k \cdot 2}} \\
& \quad \Longrightarrow \frac{12000}{2000}=\frac{e^{k \cdot 7}}{e^{k \cdot 2}} \Longrightarrow \frac{12000}{2000}=e^{k \cdot 5} \Longrightarrow \ln \left(\frac{12000}{2000}\right)=\ln \left(e^{5 k}\right) \Longrightarrow \ln \left(\frac{12000}{2000}\right)=5 k \Longrightarrow \frac{\ln \left(\frac{12000}{2000}\right)}{5}=k \approx 0.3584
\end{aligned}
$$

Find $N_{0}: \quad 12000=N_{0} e^{0.3584 * 7}$

$$
\frac{12000}{e^{0.3584 * 7}}=N_{0} \approx 976.39
$$

6. (04 pts) A radioactive isotope decays according to $Q=14 e^{k t}$ and has a half-life of 2,707 years. Find the vaue of k.

$$
k=\frac{Z}{(6 \text { decimals })}_{-0.000256}
$$

A half-life of 2,707 years means $Q=7$ when $t=2707$.

$$
\begin{aligned}
& 7=14 e^{k 2707} \\
& \frac{7}{14}=\frac{14 e^{k 2707}}{14} \\
& \frac{1}{2}=e^{k 2707} \\
& \ln \left(\frac{1}{2}\right)=\ln \left(e^{k 2707}\right) \\
& \ln \left(\frac{1}{2}\right)=k 2707 \\
& \frac{\ln \left(\frac{1}{2}\right)}{2707}=k \approx-0.000256
\end{aligned}
$$

7. (04 pts) What is the half-life of a decaying substance if the initial amount present is 9 grams and there are 2 grams left after 19,000 years: half-life = \qquad 8752 years \qquad

First, you must find the decay rate, k :
$2=9 e^{k 19000}$
$\frac{2}{9}=\frac{9 e^{k 19000}}{9}$
$\frac{2}{9}=e^{k 19000}$
$\ln \left(\frac{2}{9}\right)=\ln \left(e^{k 19000}\right)$
$\ln \left(\frac{2}{9}\right)=k 19000$
$\frac{\ln \left(\frac{2}{9}\right)}{19000}=k \approx-0.0000792$
Recall, the half - life $=\frac{\ln \left(\frac{1}{2}\right)}{k}=\frac{\ln \left(\frac{1}{2}\right)}{-0.0000792}=8752$ years
08. (06 pts) Depreciation. Suppose you buy a new car. The car's value decreases according to $V=15000 e^{-.0375 t}$ where V value of the car(in dollars) and t is the age of the car (in years).
a) What the price you paid for the car? $\$ 15000$
b) Suppose you want to sell the car when it value has decreased to $\$ 9,000$. What will be the age of the car then?

Set $V=9000$ then solve for t :
$9000=15000 e^{-.0375 t}$
$\frac{\ln \left(\frac{9000}{15000}\right)}{-.0375}=t \approx 13.62$ years

