MS 101 Sample Test 2 (Section 5.5) $A = P e^{rt}$ $A = P(1 + \frac{r}{n})^{nt}$ $P = P_0 e^{kt}$ $Q = Q_0 e^{kt}$

Solutions can be found at the bottom of this file.

01. (06 pts) \$1250 is invested at an APR of 6% compounded continuously.

a) What is the value after 15 years?

- b) How long will it take for the investment to double in value?
- 02. (06 pts) \$1300 is invested and compounded continuously. After 13 years the investment has doubled. Find the value r (4 decimals) in the model and express it as an APR(annual percentage rate).

r = _____ APR = _____

03. (04 pts) The population of Shanty Town can be modeled by $P = 1500 e^{.017t}$ where t = 0 represents year 2000 and P is the number of people. What will the population be in the year 2007?

POPULATION = _____ (round to the nearest whole number)

04. (04 pts) The population of Shankstown can be modeled by $P = 1500 e^{kt}$ where t = 0 represents year 1990. In 2005 the population was 1700 people. Find k (the continuous growth rate).

k = _____

(4 decimals)

05. (06 pts) The number of bacteria in a petri dish is modeled by $N = N_0 e^{kt}$ where t is in days and N is the number of bacteria. On day 2 there are 2,000 bacteria and on day 7 there are 12,000 bacteria.

Find N_0 and k and write the model as an equation.

k =	N ₀ =	THE MODEL:	(This is an equation.)
(4 decimals)	(2 decimals)		

06. (04 pts) A radioactive isotope decays according to $Q = 14 e^{kt}$ and has a half-life of 2,707 years. Find the vaue of k.

k = _____(6 decimals)

07. (04 pts) What is the half-life of a decaying substance if the initial amount present is 9 grams and there are 2 grams left after 19,000 years:

half-life = _____

08. (06 pts) **Depreciation**. Suppose you buy a new car. The car's value decreases according to $V = 15000 e^{-.0375 t}$ where V value of the car(in dollars) and t is the age of the car (in years).

a) What the price you paid for the car?

b) Suppose you want to sell the car when it value has decreased to \$9,000. What will be the age of the car then?

01. (06 pts) \$1250 is invested at an APR of 6% compounded continuously.

a) What is the value after 15 years? $1250 e^{(.06*15)} = $3,074.50$

b) How long will it take for the investment to double in value?

 $2500 = 1250 e^{(.06*t)}$ $\frac{2500}{1250} = \frac{1250 e^{(.06*t)}}{1250}$ $2 = e^{(.06*t)}$ $\ln(2) = \ln(e^{(.06*t)})$ $\ln(2) = .06*t$ $\frac{\ln(2)}{.06} = t \approx 11.55 \text{ years}$

02. (06 pts) \$1300 is invested and compounded continuously. After 13 years the investment has doubled. Find the value r (4 decimals) in the model and express it as an APR(annual percentage rate).

 $r = __0.0533_ \qquad \text{APR} = __5.33\%_$ $2600 = 1300 e^{(r*13)}$ $\frac{2600}{1300} = \frac{1300 e^{(r*13)}}{1300}$ $2 = e^{(r*13)}$ $\ln(2) = \ln(e^{(r*13)})$ $\ln(2) = r * 13$ $\frac{\ln(2)}{13} = r \approx 0.0533 = 5.33\%$

03. (04 pts) The population of Shanty Town can be modeled by $P = 1500 e^{017t}$ where t = 0 represents year 2000 and P is the number of people. What will the population be in the year 2007?

POPULATION = <u>1690 people</u> (round to the nearest whole number) $P = 1500 e^{017*7} \approx 1690 \text{ people}$

04. (04 pts) The population of Shankstown can be modeled by $P = 1500 e^{kt}$ where t = 0 represents year 1990. In 2005 the population was 1700 people. Find k (the continuous growth rate).

k = ___0.0083____

(4 decimals)

 $1700 = 1500 e^{k \cdot 15}$

 $\frac{1700}{1500} = \frac{1500 e^{k*15}}{1500}$ $\frac{1700}{1500} = e^{k*15}$ $\ln\left(\frac{1700}{1500}\right) = \ln(e^{k*15})$ $\ln\left(\frac{1700}{1500}\right) = k*15$ $\frac{\ln(\frac{1700}{1500})}{1500} = k \approx 0.0083$

05. (06 pts) The number of bacteria in a petri dish is modeled by $N = N_0 e^{kt}$ where t is in days and N is the number of bacteria. On day 2 there are 2,000 bacteria and on day 7 there are 12,000 bacteria. Find N_0 and k and write the model as an equation.

 $k = __0.3584$ $N_0 = __976.39$ THE MODEL: $N = 976.39 e^{0.3584 t}$ (This is an equation.) (4 decimals) (2 decimals)

You can write two equations with the two given data points:

(2,2000) (7,12000) 2000 = $N_0 e^{k \cdot 2}$ and 12000 = $N_0 e^{k \cdot 7}$

Divide the equations:

$$\frac{12000}{2000} = \frac{N_0 e^{k7}}{N_0 e^{k/2}}$$

$$\implies \frac{12000}{2000} = \frac{e^{k7}}{e^{k/2}} \implies \frac{12000}{2000} = e^{k/5} \implies \ln(\frac{12000}{2000}) = \ln(e^{5/k}) \implies \ln(\frac{12000}{2000}) = 5 k \implies \frac{\ln(\frac{12000}{2000})}{5} = k \approx 0.3584$$
Find N₀: 12000 = N₀ e^{0.3584*7}

$$\frac{12000}{e^{0.3584*7}} = N_0 \approx 976.39$$

06. (04 pts) A radioactive isotope decays according to $Q = 14 e^{kt}$ and has a half-life of 2,707 years. Find the vaue of k.

A half-life of 2,707 years means Q = 7 when t = 2707.

 $7 = 14 e^{k2707}$ $\frac{7}{14} = \frac{14 e^{k2707}}{14}$ $\frac{1}{2} = e^{k2707}$ $\ln\left(\frac{1}{2}\right) = \ln(e^{k2707})$ $\ln\left(\frac{1}{2}\right) = k2707$ $\frac{\ln\left(\frac{1}{2}\right)}{2707} = k \approx -0.000256$

07. (04 pts) What is the half-life of a decaying substance if the initial amount present is 9 grams and there are 2 grams left after 19,000 years:

half-life = ____8752 years_____ First, you must find the decay rate, k: $2 = 9 e^{k19000}$ $\frac{2}{9} = \frac{9 e^{k19000}}{9}$ $\frac{2}{9} = e^{k19000}$ $\ln(\frac{2}{9}) = \ln(e^{k19000})$ $\ln(\frac{2}{9}) = k19000$ $\frac{\ln(\frac{2}{9})}{19000} = k \approx -0.0000792$

Recall, the half – life = $\frac{\ln(\frac{1}{2})}{k} = \frac{\ln(\frac{1}{2})}{-0.0000792} = 8752$ years

08. (06 pts) **Depreciation**. Suppose you buy a new car. The car's value decreases according to $V = 15000 e^{-.0375 t}$ where V value of the car(in dollars) and t is the age of the car (in years).

a) What the price you paid for the car? \$15000

b) Suppose you want to sell the car when it value has decreased to \$9,000. What will be the age of the car then?

Set V = 9000 then solve for t:

 $9000 = 15000 \, e^{-.0375 \, t}$

 $\frac{\ln(\frac{9000}{15000})}{-.0375} = t \approx 13.62 \, years$