Formulas: $A=P\left(1+\frac{r}{n}\right)^{n t} \quad A=P e^{r t} \quad \log _{a}(x)=y$ is equivalent to $a^{y}=x \quad$ for $0<a \neq 1$ and $x>0$

1. (06 pts) Use a calculator(round to three decimals):
a) Evaluate the function $f(x)=3.2^{x}$ for $x=4$.
b) Evaluate the function $f(x)=2\left(3.2^{x}\right)$ for $x=3$.
c) Evaluate the function $f(x)=2\left(3.2^{3 x}\right)$ for $x=2$.
d) Evaluate the function $f(x)=\log (x)$ for $x=2$.
e) Evaluate the function $f(x)=\ln (x)$ for $x=2$.
f) Evaluate the function $f(x)=\log _{5}(x)$ for $x=2$.
2. (04 pts) One of the graphs below is $y=2^{x}$ and the other is $y=5^{x}$. Label each one.

3. (04 pts) Suppose $\$ 250$ is invested at 7% APR for 5 years.
a) Find the value of the account if it is compounded monthly. $\boldsymbol{A}=$ \qquad
b) Find the value of the account if it is compounded daily.
$A=$ \qquad
c) Find the value of the account if it is compounded continuously. $\boldsymbol{A}=$ \qquad
4. (06 pts) Suppose the population of cats at the dump can be modeled by $P=1250 e^{0.025 t}$ where P is the number of cats and t is the number of years since year 2000.
a) How many cats lived at the dump in year 2000?
b) How many cats lived at the dump in year 2008?
c) Is the the size of the cat population decreasing or increasing?
5. (02 pts each) Write each of the following exponential equations as a logarithmic equation.
a) $2^{3}=8$
b) $4^{2}=16$
c) $e^{-.0446 x}=12$
6. (02 pts each) Write each of the following logarithmic equations as an exponential equation.
a) $\log _{5}(25)=2$
b) $-5=\log _{2}\left(\frac{1}{32}\right)$
c) $\log (5 x)=0.1234$
7. (04 pts) The expression $\log \left(\frac{x^{2}}{y}\right)$ is equivalent to which one of the following expressions:
a) $\frac{2 \log (x)}{\log (y)}$
b) $\frac{\log \left(x^{2}\right)}{y}$
c) $\log (x)+\log (x)-\log (y)$
d) $\log (2 x)-\log (y)$
8. (04 pts) The expression $\log (5)-\log (y)+\log (z)$ is equivalent to which one of the following expressions:
a) $\log \left(\frac{5}{y} z\right)$
b) $\log \left(\frac{5-y}{z}\right)$
c) $\log \left(\frac{5}{y}+z\right)$
d) $\log (5-y+z)$
9. (04 pts) Use the Change of Base Formula to find $\log _{6}(37)=$
10. (04 pts) TRUE or FALSE: For all $u>0$ and $v>0, \log (u+v)=\log (u)+\log (v)$
11. (04 pts) TRUE or FALSE: For all $u>0$ and $v>0, \log (u v)=\log (u) \log (v)$
12. (04 pts) Find the exact value of the logarithm $\log _{5}(125)$ without your calculator:
13. (04 pts each) Solve the following equations for the variable. Please express the final answer as a decimal rounded to 3 decimal places.
a) $3 \ln (2 x)=9$
$x=$ \qquad b) $5+2 \ln (x)=15$
c) $e^{3 x}=9$ \qquad d) $4 e^{2 x}=12$
$x=$ \qquad
\qquad
