MS 101 Sample Final Exam

Formulas: $A = P(1 + \frac{r}{n})^{nt}$ $A = P e^{rt}$ $\log_a(u) = v$ is equivalent to $a^v = u$ for $0 \le a \ne 1$ and $u \ge 0$

01. (04 pts) Let f be the exponential function $f(x) = 2.7^{x}$. Find the value f(3.1) =

02. (04 pts) Suppose \$750 is invested at 5% APR for 10 years compounded monthly. What is the final value of the investment?

03. (04 pts) Suppose \$750 is invested at 5% APR for 10 years compounded continously. What is the final value of the investment?

04. (04 pts) Suppose $g(x) = 3^x$. a) Complete the table for the given values of x. $\frac{x - 1}{g(x)}$

b) Plot the points from the table and sketch the graph of g on the axes below.

05. (04 pts) Convert the exponential equation $8^2 = 64$ to the equivalent logarithmic equation.

06. (04 pts) Convert the logarithmic equation $\log_2(8) = 3$ to the equivalent exponential equation.

07. (04 pts) Use your calculator to evaluate the function $f(x) = \log(x)$ for x = 15. answer:

08. (04 pts) Observe the graph below. It is the graph of a function of the form $f(x) = \log_a(x)$ What is the value of a?

09. (04 pts)The expression log(2x) is equivalent to which of the following:a) $log(x^2)$ b) 2 log(x)c) log(2) log(x)d) log(2) + log(x)

10. (04 pts) The expression $\frac{\log(x) - \log(y)}{2}$ is equivalent to which of the following: a) $\log(\frac{x}{2}) - \log(\frac{y}{2})$ b) $\log(\sqrt{\frac{x}{y}})$ c) $\sqrt{\log(x) - \log(y)}$ d) $2\log(\frac{x}{y})$

11. (04 pts) The expression $ln(2^x)$ is equivalent to which of the following:

a) $\ln(x + x)$ b) $2 \ln(x)$ c) $\frac{\ln(x)}{2}$ d) $x \ln(2)$

12. (04 pts each) Solve the following equations for the variable. Express the final answer as a decimal. a) $4 \ln(3x) = 8$

- b) $4 + 2 \ln(x) = 12$
- c) $e^{3x} = 9$
- d) $3e^{2x} + 1 = 10$

13. (04 pts) An investment of \$750 is made at r% APR compounded continously. After 5 years the investment is worth \$950. What is the APR?

14. (04 pts) The population of Dogville can be modeled by $P = 200 e^{kt}$ where t is years since 1990. In 1995 the population was 250.

a) Find the value of *k*.

b) Does this model represent exponential growth or exponential decay?

15. (04 pts) On the axes below, sketch the angle 150° in standard position. Use an arrow to indicate the amount and direction of the rotation that forms the angle.

16. (04 pts) On the axes below, sketch the angle -205° in standard position. Use an arrow to indicate the amount and direction of the rotation that forms the angle.

- 17. (04 pts) Tell me the meaning of "reference angle."
- 18. (04 pts) Tell me the meaning of "acute angle".
- 19. (04 pts) Estimate the reference angle for the angle sketched below.

20. (04 pts) Suppose $\theta = 240^{\circ}$. What is the measure of θ in radians(preserve π)?

21. (04 pts) Suppose $\theta = \frac{2\pi}{3}$. What is the measure of θ in degrees?

22. (04 pts) Suppose $\theta = 60^{\circ}$.

- a) Tell me an angle which is positive and coterminal to θ .
- b) Tell me an angle which is negative and coterminal to θ .

23. (10 pts) Suppose the right triangle below has legs of length 3 and 4 and hypotenuse 5. Also the angle θ lies opposite the leg of length 3.

a)	Label each side with the proper length.	$sin(\theta)$ =	$csc(\theta) =$
b)	Indicate which angle is θ .	$\cos(\theta)$ =	$\sec(\theta) =$
c)	Complete the table:	$tan(\theta)$ =	$\cot(\theta) =$

24. (10 pts) Suppose the right triangle below has legs of length 8 and 15. The angle θ lies opposite the leg of length 15.

- a) Label each side with the proper length, including the hypotenuse.
- b) Indicate which angle is θ .
- c) Complete the table:

 $\cos(\theta)$ = $\sec(\theta) =$ $tan(\theta) =$ $\cot(\theta) =$

 $csc(\theta) =$

 $sin(\theta) =$

25. (08 pts) Please refer to the angle θ sketched below. Note that the terminal ray of θ is passing thru the point (-4,3). Answer the following:

26. (06 pts) Observe the periodic function graphed below.

a) What is the midline of the function?

- b) What is the period of the function?
- c) What is the amplitude of the the function?

27. (04 pts) A right triangle has legs of length 5 and 9. Suppose θ lies adjacent the leg of length 5. Use your calculator's inverse function buttons to determine the degree measure of θ . **answer** = _____

28. (04 pts) TRUE or FALSE: The equation $\cos(\theta) = \frac{1}{\sec(\theta)}$ is a trigonometric identity.

29. (04 pts) Find the acute (0 < x < 90 °) solution to the equation $2 \sin(x) - 1 = 0$.

30. (04 pts) Find the acute $(0^{\circ} < x < 90^{\circ})$ solution to the equation $2\cos(x) - 1 = 0$.

31. (04 pts) Find the solution $(-90^{\circ} < x < 90^{\circ})$ solution to the equation $\tan^2(x) = 3$.

32. (04 pts) What is the Pythagorean Trigonometric Identity?

33. (04 pts) TRUE or FALSE: The maximum value of a periodic function is always the amplitude.

34. (04 pts) TRUE or FALSE: The best way to study for an exam is by staring at the sample test.