Section 2.7
 Inverse Functions

Suppose there are two functions f and g.
If $a=f(b) \quad$ WHENEVER $\quad b=g(a)$
then f and g are inverse functions.

We also say that f and g are "inverses of each other".

That is:
f is the inverse of g AND g is the inverse of f
"WHENEVER" means for ANY ordered pair (b,a) that satisfies f, the ordered pair (a, b) satisfies g.

An ordered pair (x, y) satisfies a function f if
$y=f(x)$ or equivalently $f(x)=y$
example: $y=f(x)=2 x+1$
$(3,7)$ satisfies the function
$f(3)=7$

$$
\text { Example: } \begin{array}{cc}
& f(x)=3 x \\
& g(x)=\frac{x}{3} \\
(2,6) & \cdots-\text { switch }-\cdots(6,2) \\
f(2)=3(2) & g(6)=\frac{6}{3} \\
f(2)=6 & g(6)=2 \\
& \\
(3,9)<- \text { switch }->(9,3) \\
f(3)=9 & g(9)=3
\end{array}
$$

BUT, it must hold true for all ordered pairs, not just a few that you might pick randomly.
How can we prove this?
..Example(cont'd): $\quad f(x)=3 x \quad g(x)=\frac{X}{3}$

Let a be an arbitrary number....
then

$$
\begin{aligned}
& f(a)=3 a \\
& \text { so }(a, 3 a) \text { satifies } f . \quad \text { check: switch } \quad g(3 a)=\frac{3 a}{3} \\
& \\
& \\
& g(3 a)=a
\end{aligned}
$$

Since a was arbitrary, the property must hold for all ordered pairs.

Example: Suppose $f(x)=5 x$

If g is the inverve of f, what is the formula for g ?

$$
g(x)=\frac{x}{5}
$$

$$
\ldots \text { Example(cont'd): } \quad f(x)=3 x \quad g(x)=\frac{x}{3}
$$

Notice that each function "REVERSES" the other one.
Whatever f "does" to x,
g reverses that and you get x back again.

Nov 15-11:54 AM

Example: Suppose $f(x)=x+4$

If g is the inverve of f, what is the formula for g ?

$$
g(x)=x-4
$$

Notes:

1) Inverse functions exist in pairs: if g is the inverse of f, then f is the inverse of g.
2) A function does not have to have an inverse.
3) A function can only have ONE inverse(the inverse is unique).
4) For a function named f, the inverse can be written f^{-1}

Example: $f(x)=x+4$ and $f^{-1}(x)=x-4$

Inverse functions and TABLES.

What is an easy description of how to make a table for the inverse function? SWITCH THE ROWS

These are all ways of saying the same thing:
f has an inverse function
-OR-
f is invertible
-OR-
f^{1} exists

Apr 27-1:44 PM

Example: Determining if the inverse exists from a table.

x	-1	-2	0	3	4
$h(x)$	5	6	5	8	9

x	5	6	5	8	9
$h^{-1}(x)$	-1	-2	0	3	4

So, you can say:
h does not have an inverse function
-OR-
h is not invertible
-OR-
h^{-1} does not exist

A "function box".

x goes in, something happens, y comes out.

mathematical notation

Note: The "something" is often given by a mathematical expression.

The Identity Function: The output equals the input.
These are all the same function:

$$
\begin{array}{lll}
f(x)=x & h(x)=x & \left(\frac{f}{g}\right)(x)=x
\end{array}
$$

$$
f(t)=t
$$

$$
g(x)=x
$$

$$
k(y)=y
$$

$$
g(z)=Z
$$

$$
(f+g)(x)=x
$$

...and many more.

Nov 15-1:09 PM

Compostion of inverse functions:

The boxes pictured above correspond to the following:

$$
f^{-1}(f(x))=\underset{\substack{\prime \\ \text { "input" }}}{X} \quad \text {--OR-- } \quad\left(f^{-1} \circ f\right)(X)=X
$$

Compostion of inverse functions, reversing the order of f and f^{-1}.

The boxes pictured above correspond to the following:

Notice that f^{-1} is the inside function.

Since two inverse functions "reverse" each other, composing a pair of inverse functions just gives you the "identity function".

$$
\begin{gathered}
\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=x \\
- \text { AND -- } \\
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=x
\end{gathered}
$$

To VERIFY that two functions f and g are inverses:

Find $f(g(x))$ and $g(f(x))$.

If $\quad f(g(x))=x \quad$--AND-- $\quad g(f(x))=x$
then f and g are inverse functions.

Then you may say
$g(x)=f^{-1}(x) \quad$-- OR -- $\quad f(x)=g^{-1}(x)$

Example: Verify that f and g are inverse functions.

$$
\begin{array}{r}
f(x)=7 x+1 \quad g(x)=\frac{x-1}{7} \\
f(g(x))=f\left(\frac{x-1}{7}\right)=7\left(\frac{x-1}{7}\right)+1 \\
x-1+1=x \\
g(f(x))=g(7 x+1)=\frac{7 x+1-1}{7}=x
\end{array}
$$

Nov 20-9:56 AM

$$
\begin{aligned}
& \text { Verify that } f \text { and } f^{-1} \text { are in fact inverses. Note: by naming this } \\
& f(x)=4 x \quad \& \quad f^{-1}(x)=\frac{X}{4} \\
& \begin{aligned}
\left(f \circ f^{-1}\right)(x)= & f\left(f^{-1}(x)\right) \\
& f\left(\frac{x}{4}\right)=4 \frac{x}{4}=x
\end{aligned} \\
& \left(f^{\prime} \circ f\right)(x)=f^{-1}(f(x)) \\
& f^{-1}(4 x)=\frac{4 x}{4}=x
\end{aligned}
$$

Q: How do we know if y is a function of x ? (when looking at the graph)

Q: How do we know if x is a function of y ? (when looking at the graph)

Apr 27-10:03 AM

Testing a graph to see if it has an inverse:

1) Vertical Line Test -- tells you if y is a function of x.
2) Horizontal Line Test -- tells you if x is a function of y.

- If the graph passes both tests, it is the graph of an invertible function.

```
Procedure for finding the inverse function if given an equation:
    \(f(x)=\frac{5 x-3}{2}\)
        \(y=\frac{5 x-3}{2} \quad\) Replace \(f(x)\) with \(y\).
        \(x=\frac{5 y-3}{2} \quad\) Interchange \(x\) with \(y\).
    \(2 x=5 r-3 \quad\) Solve for \(y\).
    \(2 x+3=5 Y\)
    \(\frac{2 x+3}{5}=y\)
    \(f^{-1}(x)=\frac{2 x+3}{5} \quad\) Replace \(y\) with \(f^{-1}(x)\).
```

Verify they are inverses by composing the functions in reverse order:

$$
\begin{array}{r}
\qquad f(x)=\frac{5 x-3}{2} \quad f^{-1}(x)=\frac{2 x+3}{5} \\
\text { Verify: } \\
f^{-1}(f(x))=f^{-1}\left(\frac{5 x-3}{2}\right)=\frac{2\left(\frac{5 x-3}{2}\right)+3}{5} \\
\frac{5 x-3+3}{5} \\
\frac{5 x}{5}=X
\end{array}
$$

So, $f^{-1}(f(X))=X \quad$ is the Identity Function.
and
So, $f\left(f^{-1}(X)\right)=X \quad$ is the Identity Function.

The two functions are inverses.

Verify they are inverses by composing the functions:

$$
f(x)=\frac{5 x-3}{2} \quad f^{\prime}(x)=\frac{2 x+3}{5}
$$

$$
f\left(f^{-1}(x)\right)=f\left(\frac{2 x+3}{5}\right)=\frac{5\left(\frac{2 x+3}{5}\right)-3}{2}
$$

$$
\frac{2 x+3-3}{2}=\frac{2 x}{2}=x
$$

Example: $f(x)=2 x+3$
Find the inverse function and verify that they are inverses.

$$
\begin{array}{ll}
y=2 x+3 & \text { Replace } f(x) \text { with } y . \\
x=2 y+3 & \text { Interchange } x \text { with } y . \\
x-3=2 y & \text { Solve for } y . \\
\frac{x-3}{2}=y & \\
f^{-1}(x)=\frac{x-3}{2} & \text { Replace } y \text { with } f^{-1}(x) .
\end{array}
$$

...Example:

Verify that $f(x)=2 x+3 \quad f^{-1}(x)=\frac{x-3}{2}$ are inverses.

Example of a one-to-one function:

$$
f(x)=x^{3}
$$

x	-3	-2	-1	0	1	2	3
x^{3}	-27	-8	-1	0	1	8	27

$$
\begin{array}{cc}
\underline{\boldsymbol{x}} & \underline{\boldsymbol{x}}^{3} \\
-3 \longrightarrow & -27 \\
-2 \longrightarrow & -1 \\
-1 \longrightarrow & 0 \\
0 \longrightarrow & 8 \\
1 \longrightarrow & 27
\end{array}
$$

One-to-One Functions

A function is called one-to-one if each output has only one input.

The only functions which have an inverse are those that are one-to-one.

Example of a function which is NOT one-to-one:
$f(x)=x^{2}$

x	-3	-2	-1	0	1	2	3
x^{2}	9	4	1	0	1	4	9

You might say that this function is "two-to-one".

The End.

