Section 2.7

Inverse Functions

An ordered pair (x,y) satisfies a function f if y = f(x) or equivalently f(x) = yexample: y = f(x) = 2x + 1(3.7) satisfies the function $\int_{1}^{1} \int_{1}^{1} f(3) = 7$

Nov 20-9:38 AM

Apr 27-11:25 AM

If a = f(b) WHENEVER b = g(a)
then f and g are inverse functions.
We also say that f and g are "inverses of each
other".
That is:
f is the inverse of g AND g is the inverse of f

Suppose there are two functions f and g.

"WHENEVER" means for ANY ordered pair (b,a) that satisfies f, the ordered pair (a,b) satisfies g.

Example:
$$f(x) = 3x$$
 $g(x) = \frac{x}{3}$
(2,6) \leftarrow switch \rightarrow (6,2)
 $f(2) = 3(2)$ $g(6) = \frac{6}{3}$
 $f(2) = 6$ $g(6) = 2$
(3,9) \leftarrow switch \rightarrow (9,3)
 $f(3) = 9$ $g(9) = 3$
BUT, it must hold true for all ordered pairs, not just a few that
you might pick randomly.

How can we prove this?

Apr 27-1:39 PM

Nov 15-11:54 AM

Example: Suppose f(x) = 5x

If g is the inverve of f, what is the formula for g?

$$g(x) = \frac{X}{5}$$

Example: Suppose f(x) = x + 4

If g is the inverve of f, what is the formula for g?

$$g(x) = X - 4$$

Sec2.7.notebook

 $f^{-1}(x) = x - 4$

τ 6

(3,-1) (4,0) (5,1) (6,2) (7,3)

7

Ч

D

3

Apr 27-1:43 PM

Apr 27-1:44 PM

x	-1	-2	0	3	4		
h(x)	5	6	5	8	9		
				-		7	
x	5	6	5	8	9		
h⁻¹(x)	-1	-2	0	3	4		
-OR-					-		
	s not	exist					
i ⁻¹ doe							

The Identity Function: The output equals the input.
These are all the same function:

$$f(x) = x \qquad h(x) = x \qquad \left(\frac{f}{g}\right)(x) = x$$

$$f(t) = t \qquad g(x) = x$$

$$k(y) = y \qquad g(z) = z$$

$$(f + g)(x) = x \qquad \dots \text{ and many more.}$$

Apr 27-1:55 PM

Since two inverse functions "reverse" each other, composing a pair of inverse functions just gives you the "identity function".

$$(f \circ f^{-\prime})(x) = f(f^{-\prime}(x)) = x$$

-- AND --

$$(f^{-1} \circ f^{-1})(x) \simeq f^{-1}(f^{-1}(x)) = x$$

To VERIFY that two functions f and g are inverses: Find f(g(x)) and g(f(x)). If f(g(x)) = x --AND-- g(f(x)) = xthen f and g are inverse functions. Then you may say $g(x) = f^{-1}(x)$ -- OR -- $f(x) = g^{-1}(x)$

Apr 27-1:59 PM

Nov 20-9:56 AM

Example: Verify that f and g are inverse functions. $\begin{aligned} & & & \\$

Verify that f and f⁻¹ are in fact inverses.

$$f(x) = 4x \quad \& \quad f^{-1}(x) = \frac{x}{4}$$
Note: by naming this
function f⁻¹ we are implying
the inverse exists, even
though that is what we are
trying to determine.

$$(\varsigma \circ \varsigma^{-1}(x)) = \varsigma (\varsigma^{-1}(x))$$

$$\varsigma (\varsigma^{-1}(x)) = \varsigma^{-1}(\varsigma(x))$$

$$\varsigma^{-1}(\varphi(x)) = \frac{\varphi(x)}{\varphi} = x$$

Sec2.7.notebook

Apr 27-10:03 AM

Fact: If y is a function of x

AND

x is a function of y

Then the relationship is INVERTIBLE.

In other words: There is a pair of functions which are inverses of each other.

Testing a graph to see if it has an inverse:

1) Vertical Line Test -- tells you if y is a function of x.

2) Horizontal Line Test -- tells you if x is a function of y.

■ If the graph passes both tests,

it is the graph of an invertible function .

Verify they are inverses by composing the functions:

$$f_{x}(x) = \frac{5x^{-3}}{2} \qquad f_{y}'(x) = \frac{2x+3}{5}$$

$$f_{y}(f_{y}''(x)) = f_{y}(\frac{2x+3}{5}) = \frac{5(\frac{2x+3}{5}) - 3}{2}$$

$$\frac{2x+3-3}{2} = \frac{2x}{2} = X$$

Apr 27-2:01 PM

Example: f(x) = 2x + 3

Find the inverse function and verify that they are inverses.

y = 2x + 3Replace f(x) with y.x = 2y + 3Interchange x with y.x - 3 = 2ySolve for y. $\frac{x - 3}{2} = y$ $f^{-1}(x) = \frac{x - 3}{2}$ Replace y with $f^{-1}(x)$.

...Example:

Verify that f(x) = 2x + 3 $f^{-1}(x) = \frac{x-3}{2}$

are inverses.

A function is called one-to-one if each output has only one input. The only functions which have an inverse are those that are one-to-one.

One-to-One Functions

Nov 18-3:51 PM

Nov 22-12:57 PM

Apr 14-10:59 AM

Nov 18-3:47 PM