Section 2.6

Combinations of Functions

Making new functions from old.

A little bit of set theory....

Unions and Intersections of sets:
Suppose there are two sets(call them set A and set B).
The "Union of A with B " is a new set which consists of all
the elements that appear in either A or B.
Notation: $A \cup B$ is said "A union B".

The "Intersection of A with B " is a new set which consists of all the elements that appear in both A and B.
Notation: $A \cap B$ is said " A intersect B ".

Example: $A=\{1,2,3\}$ and $B=\{2,3,4\}$ Note: these two sets are finite.
$A \cup B=\{1,2,3,4\} \quad$ "A union $B "$
$A \cap B=\{2,3\} \quad$ " A intersect B "

Let x be a real number...

$$
A=\{2 \leq x<\infty\} \quad B=\{-\infty<x<5\}
$$

$A \cap B=\{2 \leq x<5\}$
$A \cap B=$ "all numbers that lie beneath both the blue and red line"

Note: these sets are infinite.
"Arithmetic" means:

1) Adding $a+b$
2) Subtracting $a-b$
3) Multiplying $a b$
4) Dividing
a / b

Given any two functions f and g, the four Arithmetic Combinations are:

$$
\begin{aligned}
(f+g)(x)=f(x)+g(x) & \text { Sum function: "f plus g" } \\
(f-g)(x)=f(x)-g(x) & \text { Difference function: "f minus g" } \\
(f g)(x)=f(x) g(x) & \text { Product function: " } f \text { times } g " \\
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & \text { Quotient function: " } f \text { divided by } g "
\end{aligned}
$$

Note: $(f+g)(f-g)(f g)(f / g)$ are the names of the new functions.

Example: $f(x)=x^{2}$ and $g(x)=\sqrt{4-x^{2}}$
The four Arithmetic Combinations are:
$\begin{array}{ll}(f+g)(x)=f(x)+g(x) & \\ (f+g)(x)=x^{2}+\sqrt{4-x^{2}} & \\ (f-g)(x)=f(x)-g(x) & \\ (f-g)(x)=x^{2}-\sqrt{4-x^{2}} \quad \text { Difference }\end{array}$
$(f g)(x)=f(x) g(x) \quad$ Product
$(f g)(x)=x^{2} \sqrt{4-x^{2}}$

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad\left(\frac{f}{g}\right)(x)=\frac{x^{2}}{\sqrt{4-x^{2}}} \quad \text { Quotient }
$$

Nov 8-12:52 PM

What about the domain and range?

$$
f(x)=x^{2}
$$

$$
g(x)=\sqrt{4-x^{2}}
$$

Domain of $f=\{-\infty<x<\infty\}$
Domain of $g=\{-2 \leq x \leq 2\}$

$\operatorname{Dom} f \cap \operatorname{Dom} g=\{-2 \leq x \leq 2\}$

> So, the domain of the new functions: $(f+g)(x)=x^{2}+\sqrt{4-x^{2}}$ $\begin{array}{ll}(f-g)(x)=x^{2}-\sqrt{4-X^{2}} & \text { Domain of }(f+g)=\{-2 \leq x \leq 2\} \\ (f g)(x)=x^{2} \sqrt{4-X^{2}} & \text { Domain of }(f-g)=\{-2 \leq x \leq 2\} \\ \left(\frac{f}{g}\right)(x)=\frac{X^{2}}{\sqrt{4-x^{2}}} & \text { Domain of }(f g)=\{-2 \leq x \leq 2\}\end{array}$ $\begin{array}{ll} & \text { Domain of }(f / g)=\{-2 \leq x \leq 2\}\end{array}$

We must exclude the zeros of g from the domain of the quotient function. The "strictly inequality" does this.

Note: the zeros of g are $x= \pm 2$

$$
(f \circ g)(X)=f(g(X))
$$

" f composed with g of x equals f of g of x "
$(f \circ g)$ is the name of the new function
f is the outside function.
g is the inside function.

Function Composition

"Putting one function inside the other"

We can reverse the order:

$$
(g \circ f)(x)=g(f(x))
$$

This is said " g composed with f."
It's exactly the same operation, but now f is the inside function.

$$
\text { a) } \begin{aligned}
f(x)= & x^{2} \quad g(x)=2 x-1 \\
(f \circ g)(x)= & f(g(x)) \\
& f(2 x-1)=(2 x-1)^{2}
\end{aligned}
$$

$(f \circ g)(x)=(2 x-1)^{2}$
$(f a g)(3)=(2 * 3-1)^{2}=25$

$$
\text { b) } \left.\begin{array}{rl}
f(x) & =x^{2}-2 x \quad g(x)=\frac{2}{3} x \\
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\frac{2}{3} x\right)
\end{array}\right)=\left(\frac{2}{3} x\right)^{2}-2\left(\frac{2}{3} x\right) .
$$

$$
\begin{aligned}
(g \circ f)(x)= & g(f(x)) \\
& g\left(x^{2}\right)=2 x^{2}-1 \\
(g \circ f)(x)= & 2 x^{2}-1 \\
(g \circ f)(3)= & 2(3)^{2}-1=17
\end{aligned}
$$

c) | $h(x)$ | $=\sqrt{x-1} \quad k(x)=x^{3}+2$ |
| ---: | :--- |
| $(h \cdot k)(x)$ | $=h(k(x))$ |
| | $h\left(x^{3}+2\right)=\sqrt{x^{3}+2-1}: \sqrt{x^{3}+1}$ |
| $(k \cdot h)(x)$ | $=k(h(x))$ |
| | $=k(\sqrt{x-1})=(\sqrt{x-1})^{3}+2$ |

$$
\begin{aligned}
\text { d) } \quad g(x) & =\sqrt{x} \quad f(x)=x^{2} \\
(f \circ g)(x) & =f(g(x)) \\
& =f(\sqrt{x})=(\sqrt{x})^{2}=x
\end{aligned}
$$

So, $(f \circ g)(x)=x \quad$ "The Identity Function"

$$
(g \circ f)(x)=g(f(x))
$$

$$
=g\left(x^{2}\right)=\sqrt{x^{2}}=|x|
$$

This is the Absolute Value Function.

Exercise 43

a) $(f+g)(x)=f(x)+g(x)$ $(f+g(3)=f(3)+9(3)$

$$
=2+1=3
$$

b) $\left(\frac{f}{g}\right)(2)=\frac{f(2)}{g(2)}=\frac{0}{2}=0$

The End.

$$
\begin{aligned}
& \text { e) } \quad f(x)=3 x \quad g(x)=\frac{X}{3} \\
& (f \circ g)(x)=f(g(x)) \\
& (f \circ g)(x)=f\left(\frac{X}{3}\right) \\
& (f \circ g)(x)=f\left(\frac{X}{3}\right)=3\left(\frac{X}{3}\right)=x \\
& (f \circ g)(x)=X \quad \text { "The Identity Function" } \\
& (g \circ f)(x)=g(f(x)) \\
& (g \circ f)(x)=g(3 x) \\
& (g \circ f)(x)=g(3 x)=\frac{3 x}{3}=x \\
& (g \circ f)(x)=x \\
& \text { So, }(f \circ g)(x)=x=(g \circ f)(x) \text { both equal the Identity Function" } \\
& \text { And that's special. }
\end{aligned}
$$

