Section 2.3
 Analyzing the Graphs of Functions

The graph of a function f is the set of all ordered pairs (x, y) that satisfy the equation
$y=f(x)$
Satisfy means the function equals y when input is x.
(x, y)
Note: the strict definition says the graph is a set of ordered pairs, but we usually think of the graph as the picture we would see if we could graph this infinite set.

The set is made up of points (input, output) or ($x, f(x)$)
$y=f(x)=x^{2}+2$
$y=x^{2}+2$

x	-3	-2	-1	0	1	2	3
$f(x)$	11	6	3	2	3	6	11

The
"graph" of the function f.

One way to draw a graph is by point plotting, which means plotting several of the points that satify the function and trying to draw a line through them.

This is a poor method and is old-fashioned.
Using technology, we can easily see an accurate graph.

We will use Desmos.

Important note: This section in the text is not about how to draw the graph of a function from its formula.

Rather, it is about identifying features of the graph and analyzing the behavior of the function based on these features.

Example from the text: How to "analyze" a graph:

Oct 27-10:30 AM

The domain is the set of all x-values the graph takes on.

Ex: Finding the domain and range by looking at the graph.

The range is the set of all y-values the graph takes on.

Mar 19-11:25 AM

Ex: Finding the domain and range by looking at the graph.

DOMAIN

Q: Does this table describe a function from x to y ?
or, "is y a function of x ?"

x (input)	1	2	3	1
y (output)	8	9	10	11

$$
\begin{aligned}
& x \\
& 1=8 \\
& 2 \longrightarrow 10 \\
& 3 \\
& \hline
\end{aligned}
$$

Consider a possible graph where one part lies
above another part......

x (input)	1	2	3	1
y (output)	8	9	10	11

If any part of a graph lies above another part, that means there are two points on the graph with same x-coordinate.
That means one output has two different outputs.

If a vertical line passes across a graph and touches it at multiple points at once, then y is NOT a function of x.

Or, in other words....

On the graph of any function where " y is function of x ", or $y=f(x)$, it will be true that the vertical line will never intersect the graph at more than one point at a time.

Oct 30-11:07 AM

Oct 30-11:07 AM

Definition:

If $f(c)=0$ then $x=c$ is called a zero of f.
(or whatever the name of the function may be.)
The zeros of a function are just the x-values where the graph has an x-intercept.

Finding the zeros of a function algebraically

$$
\begin{aligned}
& 0 \\
& 0=2 x+4 \\
& -4=2 x \\
& -2=\frac{-4}{2}=x \\
& \text { Check: } \quad g(x)=2 x+4 \\
& g(-2)=2(-2)+4 \\
& =0
\end{aligned}
$$

Finding the zeros of a function algebraically
b) find the zeros of $f(x)=x^{2}-2 x$ $0=x^{2}-2 x$ $0=x(x-2)$

$$
{ }_{x=0}^{\lambda} \quad \uparrow_{x=2}
$$

Check: $f(0)=0^{2}-2(0)=0$

$$
f(2)=2^{2}-2(2)=0
$$

$x=0,2$ are the zeros of f...also known as x-intercepts.

Finding the zeros of a function algebraically
c) $g(t)=2 t^{2}+4$

$$
0=2 t^{2}+4
$$

$$
-4=2 t^{2}
$$

$$
-2=t^{2}
$$

$$
\sqrt{-2}=\sqrt{t^{2}}
$$

$$
\sqrt{-2}=t \quad \text { "g has nozeros" }
$$

that's NOT a real number!!

Finding the zeros of a function algebraically
d) $h(x)=\sqrt{25-x^{2}}$
$0=\sqrt{25-x^{2}}$
$0^{2}=\left(\sqrt{25-x^{2}}\right)^{2}$

$$
0=25-x^{2}
$$

$$
x^{2}=25
$$

$$
\sqrt{x^{2}}=\sqrt{25}
$$

$$
x= \pm 5 \text { are the zeros of } h
$$

Intervals of:

Increasing
Decreasing
Constant

Mar 24-11:44 AM

DECREASING means
y gets smaller as x gets bigger.
"going downhill"

CONSTANT means the y-values do not change.
"a horizontal line"

When you specify the intervals where a graph is INCREASING/DECREASING/CONSTANT you should always use the strict inequality symbol:

Do not use the less than or equal to symbol: \leq

Increasing: $(-\infty,-3) \cup(-1,2)$
Decreasing: $(2, \infty)$

Constant: $(-3,-1)$

Finding intervals of INC/DEC/CON

"U" means "combined with"

$(-\infty,-3) \cup(-1,2)$

Decreasing: $2<x<\infty$
$(2, \infty)$

Constant: $-3<x<-1$
$(-3,-1)$

Finding intervals of INC/DEC/CON

$$
\begin{array}{ll}
\text { INC: }-\infty<x<0 \text { U } 2<x<\infty & (-\infty, 0) \cup(2, \infty) \text { INC } \\
\text { DEC: } 0<x<2 & (0,2) \quad D E C \\
\text { constant: Nowhere } &
\end{array}
$$

maxima and minima

Note: "maxima" is plural of maximum.
"minima" is plural of minimum.
Together, maxima or minima are called "extrema."

The end point of a graph cannot
be a local max $/ \mathrm{min}$

This graph has 4 local extrema.

Apr 9-10:59 AM

Identifying the location of an extremum.

This graph has a local minimum at $x=-2$.

Or you can say the local minimum is at $(-2,1)$.

A graph can have several types of symmetry:

1) y-axis symmetry
2) x-axis symmetry
3) origin symmetry
4) y-axis symmetry

The graph is a "reflection over the y axis." This means folding the graph on the y-axis will cause the two halves to match up.

2) x-axis symmetry

The graph is a "reflection over the x axis." This means folding the graph on the x-axis will cause the two halves to match up.

3) origin symmetry

Turning the graph upside down will result in the same graph.

Let's look at the letters of the alphabet and consider what kind of symmetry each exhibits.

Keep in mind the symmetry depends on where the letter is placed in the Cartesian Plane.

Also, the letter might not actually be the graph of a function, but it still could have symmetry.

Mar 22-11:46 AM

	y-axis symmetry
	x-axis symmetry
	origin symmetry

	y-axis symmetry
	x-axis symmetry
	origin symmetry

Mar 22-11:46 AM

Mar 22-11:46 AM

Mar 22-11:46 AM

Mar 22-11:46 AM

	y-axis symmetry
	x-axis symmetry
	origin symmetry

EVEN and ODD functions

If $f(-x)=f(x)$ then f is an EVEN function.
"Opposite inputs give same output."

If $f(-x)=-f(x)$ then f is an ODD function.
"Opposite inputs give opposite output."

An alternate way of describing an ODD function:
If $f(x)=y$
then $f(-x)=-y$

Oct 28-1:50 PM

Determining if a function is even or odd

Step One: find $f(-x)=$ expression

Step Two: Compare the expression to $f(x)$ and $-f(x)$
If $f(-x)=f(x)$ then f is an EVEN function.
If $f(-x)=-f(x)$ then f is an ODD function.
If f is not even or odd, then it is NEITHER.

Two simple examples:

Even function $f(x)=x^{2} \quad$| x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 4 | 1 | 0 | 1 | 4 |

"Opposite inputs give same output."

Odd function $f(x)=x^{3}$

"Opposite inputs give opposite output."

Is this function even or odd ??

$$
f(x)=x^{4}+x^{2}
$$

Step One: find $f(-x) \quad f(-x)=(-x)^{4}+(-x)^{2}$
simplify using algebra:
$f(-x)=(-x)(-x)(-x)(-x)+(-x)(-x)$
$f(-x)=(x)(x)(x)(x)+(x)(x)$
$f(-x)=x^{4}+x^{2}$
Step Two:
they are equal
f is an EVEN function.

Is this function even or odd ??

$$
f(x)=x^{3}+x
$$

Step One: find $f(-X)$

$$
\begin{aligned}
f(-x) & =(-x)^{3}+(-x) \\
f(-x) & =(-x)(-x)(-x)+(-x) \\
f(-x) & =-(x)(x)(x)-x \\
f(-x) & =-x^{3}-x \\
f(-x) & =-\left(x^{3}+x\right) \\
f(-x) & =-(f(x))=-f(x)
\end{aligned}
$$

Step Two:
Since $f(-x)=-f(x)$
f is an ODD function.

Is this function even or odd ??

$$
f(x)=x^{3}+1
$$

Step One: find $f(-X)$

Step Two:
f is not an ODD function.

$$
\text { So, } f(-x)=-x^{3}+1 \neq f(x)=x^{3}+1
$$

f is not an EVEN function.
and

You can say "NEITHER!"

$$
\begin{aligned}
& f(-x)=(-x)^{3}+1 \\
& f(-x)=(-x)(-x)(-x)+1 \\
& f(-x)=-x^{3}+1
\end{aligned}
$$

$$
f(-x)=-x^{3}+1 \neq-f(x)=-x^{3}-1
$$

Not ODD

Determining Symmetry from the formula:

Given a formula for a function, the type of symmetry can be determined using algebra.

The End.

Junk Yard.

