Section 2.1

Linear Equations with Two Variables

The variables are x and y.
m and b are constant values called 'parameters'.

Equation with One variable	
$m x+b=0$	
$x=\frac{-b}{m}$	(x, y)
Equation with Two variables	
Exactly one solution.	Number of solutions is infinite.
	For example,
	$y=2 x+3$
	$(1,5)(2,7)(4,11)$
	$(-3,-3) \ldots .$. are all solutions.

Sep 28-1:35 PM

Slope-Intercept Form:

The slope of a line is a number which indicates which way
the line tilts and by how much.
The slope can be positive, negative or zero.
Slope is POSITIVE $(m>0) \quad$ Line tilts up to the right
Slope is NEGATIVE $(m<0)$
right
Slope is ZERO $(m=0)$
Line does not tilt tilts down to the

Finding the slope of a line:

1) From the graph, count

2) Given two points, use the

 formula:point one: $\left(x_{1}, y_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
point one: $\left(x_{2}, y_{2}\right)$

A procedure to graph a line:

1) Write the equation in slope-intercept form.
2) Find the two intercepts:
x-intercept \dagger
y-intercept ${ }^{\dagger}$
3) Plot the two intercepts and draw the line between them.

x	0	
y		0

Note: If the line passes through the Origin, that is the point $(0,0)$, then you must pick another point in the table.

b) $\quad \begin{aligned} & x+y=2 \\ & y=-x+2\end{aligned}$

x	0	2
y	2	0

$$
\text { d) } \begin{array}{ll}
2 x-y=3 \\
-y=-2 x+3 \\
y=2 x-3
\end{array} \quad \begin{array}{|c|c|c|}
\hline x & 0 & 3 / 2 \\
\hline y & -3 & 0 \\
\hline
\end{array}
$$

The graph of a horizontal line has the form: $y=c \quad$ where c is a real number.

f) $x=4$
(4, anrthing)

This is a vertical line and the slope is UNDEFINED.

If c is a nonzero real number then

In other words, division by zero is undefined.

The special case O is called INDETERMINATE.

Sep 28-1:56 PM

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

Different ways of referring to the slope.

Feb 24-11:22 AM

Some ways to determine the slope of line:

1) If given the slope-intercept form, identify m.

$$
y=m x+b
$$

2) If given two points, use the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
3) If given the graph, count the rise $\frac{\text { run }}{}$

Finding equation of a line if you know ONE POINT and the SLOPE.
Example: Find the slope-intercept EQUATION of the line
passing through the point $(1,2)$ with slope $\frac{3}{4}$.

$$
\left(x_{1}, y_{1}\right)
$$

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & \text { Point-slope form } \\
y-2=\frac{3}{4}(x-1) \quad \text { Fill in slope and point } \\
y=\frac{3}{4} x-\frac{3}{4}+2 \\
y=\frac{3}{4} x+1 \frac{1}{4} \quad \text { slope-intercept form } \\
y=0.75 x+1.25 \quad \text {...with the numbers as decimals. }
\end{array}
$$

Feb 24-11:27 AM

Feb 24-11:29 AM

Example: Find the equation of Line 2 if it is parallel to Line 1 and Line 2 passes through (1,4).
$L_{1}: \quad y=2 x+3$
\uparrow
$m_{1}=2$
L_{2} is parallel to L_{1}. Therefore, $m_{2}=2$
$y=m_{2}\left(x-x_{1}\right)+y_{1}$ $\left(x, y_{1}\right)$ $(1,4)$
$y=2(x-1)+4$
$y=2 x-2+4$
$y=2 x+2$
Equation of L_{2}

Let's practice with "negative reciprocals"

m	negative reciprocal $-(1 / m)$
2	$-1 / 2$
-3	$1 / 3$
1	-2
2	2
-0.5	$-1 / 2.5$
2.5	
0	

Perpendicular lines:

The slopes are negative reciprocals.
If the slope of L_{1} is m_{1}
then the slope of L_{2} is $m_{2}=-\frac{1}{m_{1}}$

Feb 24-11:39 AM

Example: Find the equation L_{2} if:
L_{2} is perpendicular to L_{1} and passes thru $(1,4)$.
L_{1} has equation $y=2 x+3$
The slope of L_{2} is $m_{2}=-\frac{1}{2}$

$$
\begin{aligned}
& y=m_{2}\left(x-x_{1}\right)+y_{1} \\
& y=-\frac{1}{2}(x-1)+4 \\
& y=-\frac{1}{2} x+\frac{1}{2}+4 \\
& y=-\frac{1}{2} x+4 \frac{1}{2}
\end{aligned}
$$

The
General Form
for the
equation of a line:
$A x+B y+C=0$

Note: The General Form is NOT unique.
Any given line has an infinite number of representations in General Form.

$$
\left.\begin{array}{l}
\text { Example: Equation of a line in the General Form } \\
\begin{array}{ll}
A x+B y+C=0 \\
-6 x+3 y-9=0
\end{array} \\
3 y=6 x+9 \\
\begin{array}{l}
\text { Let's write the } \\
\text { equation in } \\
3 y
\end{array} \\
y=\frac{6 x+9}{3}
\end{array} \begin{array}{l}
\text { Slope-Intercept } \\
\text { Form }
\end{array}\right] .
$$

Feb 24-11:39 AM

The End.

