Section 1.7

Solving

Linear
Inequalities

Example of a linear inequality:

$$
3 x-7<2 x-5
$$

$a<b \quad$ and $\quad b>a$
are equivalent(they mean the same thing).

It is best to write an inequality sign so that the sign points to the left.

$$
\begin{array}{cc}
x>2 \\
2<x & \text { Rewrite so the sign points left. } \\
2<x<\infty & \text { There is no limit on how big } x \text { can be. } \\
(2, \infty) & \\
2 N T E R V A L \text { NOTATION. }
\end{array}
$$

b) $2<x<5$
$(2,5)$)---- interval notation.
c) $2 \leq x<5$
$[2,5)$---- interal notation.
d) $2<x \leq 5$ (2,5$]$ in ------- interval notation.
e) $\quad 2 \leq x \leq 5$
$[2,5]$ i-- interval notation.
f) $\quad-\infty<x \leq-3$
$(-\infty,-3] \quad$--- interval notation.

The previous sets are infinite in size since x is a REAL NUMBER.

If x could only be an integer, then this would not be true.

The sets in a) and f) are UNBOUNDED. This means there is no limit on the size of the numbers.

The other sets are BOUNDED.

Solving a linear inequality

is just like solving a
linear equation, except \dagger
if you multiply or divide by a negative number, you must reverse the direction the inequality sign points.

Sep 27-1:10 PM

Properties of Inequalities

1. Transitive Property: If $a<b$ and $b<c$ then $a<c$
2. Addition of inequalities: If $a<b$ AND $c<d$ then $a+c<b+d$
3. Addition of constant: If $a<b$ then $a+c<b+c$
4. Switch the direction of the inequality sign if you multiply or divide by a negative number.

Sep 28-11:31 AM

EX: Solving a linear inequality	
$3 x-7<2 x-5$	
$3 x-7<2 x-5$	
-2x $-2 x$	Minus $2 \times$ from both sides
$x-7<-5$	
+7 +7	Add 7 to both sides
$x<2$	
$-\infty<x<2$	Write answer
$(-\infty, 2)$	Write answer in
	interval notation

EX: Solving a linear inequality with a fraction.

$$
-2 x-7 \leq \frac{x}{3}-5
$$

Hint: Multiply by 3 to
"clear the denominator."
$3(-2 x-7) \leq 3\left(\frac{x}{3}-5\right)$
$\left.\begin{array}{rl}-6 x-21 & \leq x-15 \\ +6 x+15 \quad+6 x+15\end{array}\right]-\frac{-6}{7} \leq \frac{7 x}{7}$
$-\frac{6}{7} \leq x<\infty$
$\left[-\frac{6}{7}, \infty\right)$

EX: Solving a double linear inequality

$$
\left[-\frac{2}{5}, \frac{9}{5}\right)
$$

Sep 25-2:11 PM
EX: Solving a linear inequality
$0 \leq \frac{3-x}{2}<5$
$2(0) \leq 2\left(\frac{3-x}{2}\right)<2 \cdot 5$
$0 \leq 3-x<-3<10$
$-3<-x<7$
$-3 \leq$

$$
\begin{array}{cc}
-3 \leq-x<7 & \\
-1(-3) \geq(-1)(-x)>(-1) 7 & \text { multiply } \\
\text { by } \\
3 \geq x>-7 & \text {-1 } \\
-7<x \leq 3 & \begin{array}{l}
\text { switch } \\
\text { direction } \\
\\
\\
(-7,3]
\end{array} \\
\text { of } \\
\text { signs } 1
\end{array}
$$

$$
\begin{array}{r}
|x-5|<2 \\
-2<x-5<2 \\
3<x<7 \\
3 \\
3,7)
\end{array}
$$

$|x-s| \geq 2$
$x-5 \leq-2 \quad O R \quad 2 \leqslant x-5$

The End.

