Section 1.6
"Other" types of equations

Linear equations have exactly one solution.

$$
\begin{aligned}
& a x+b=0 \\
& a x=-b \\
& \frac{a x}{a}=-\frac{b}{a} \\
& x=\frac{-b}{a}
\end{aligned}
$$

So far, we have learned to solve:

1) Linear equations
2) Quadatic equations

4 methods of solving Quadratic equations: $a x^{2}+b x+c=0$

1) Factor
2) Taking square roots
3) Complete the Square

4) Quadratic Formula

The solutions could be REAL or IMAGINARY.

$$
\begin{aligned}
& \text { EX: Solving a polynomial equation. (To find all } \\
& \text { solutions, be sure to factor.) } \\
& \qquad \begin{array}{l}
3 X^{4}=48 X^{2} \\
3 X^{4}-48 X^{2}=0 \\
3 X^{2}\left(X^{2}-16\right)=0 \\
3 X \cdot X(X+4)(X-4)=0 \quad \text { Fut all terms on one side. } \\
\qquad x=\{0,0,-4,4\}
\end{array}
\end{aligned}
$$

$x=0$ is called a repeated solution, because it appears twice in the factorization.

FACT:

The number of complex solutions(real or imaginary) to a polynomial equation equals the degree.

As such, the number of real solutions of a polynomial equation is less than or equal to the degree.

Ex: How you can lose solutions by dividing.

$$
\begin{aligned}
& \frac{3 x^{4}}{3 x^{2}}=\frac{48 x^{2}}{3 x^{2}} \\
& x^{2}=16 \\
& \sqrt{x^{2}}=\sqrt{16} \\
& x= \pm 4
\end{aligned}
$$

So, avoid dividing by an expression containing the variable.

A useful rule about exponents:
$\left(x^{n}\right)^{m}=x^{n m}$
Ex: $\left(x^{2}\right)^{3}=x^{2.3}=x^{6}$

Same rule but expressed using rational exponents.

Ex: $\left(x^{\frac{2}{3}}\right)^{\frac{3}{2}}=x^{\frac{6}{6}}=x^{\prime}=x$

Raising both sides to an exponent

$$
\text { LHS }=\text { RHS }
$$

$(\mathrm{LHS})^{\square}=(\mathrm{RHS})^{\square}$

LHS = "left hand side"
RHS = "right hand side"
You must use the same exponent on both sides.

Ex: Solving by raising to a rational exponent:
rational means a fraction.

$$
\begin{array}{lc}
4 x^{3 / 2}-8=0 & \begin{array}{l}
\text { isolate } \\
\text { the } \\
\text { exponential }
\end{array} \\
4 x^{\frac{3}{2}}=8 & x^{\frac{3}{2}} \\
\frac{4 x^{\frac{3}{2}}}{4}=\frac{8}{4} \\
x^{3 / 2}=2 &
\end{array}
$$

base exponent How to evaluate this expression on your calculator: use the exponent key.

$2 \times x(2 \div 3) \approx 1.587$

A note about radicals:

$$
\begin{aligned}
\sqrt{x}=\sqrt[2]{x} & =x^{\frac{1}{2}} \\
\sqrt[3]{x} & =x^{\frac{1}{3}} \\
\sqrt[n]{x} & =x^{1 / n}
\end{aligned}
$$

n is called the index and if it does not appear it is 2 by default.

$$
\begin{aligned}
& \text { Examples: } \\
& \sqrt{9}=9^{\frac{1}{2}}=3 \\
& \sqrt[3]{8}=8^{1 / 3}=2 \\
& \sqrt[3]{-27}=(-27)^{1 / 3}=-3
\end{aligned}
$$

Sep 22-1:26 PM

Solve using rational exponents:

$$
\begin{aligned}
& x^{3}+512=0 \\
& x^{3}=-512 \\
&\left(x^{3}\right)^{1 / 3}=(-512)^{1 / 3} \\
& x=x^{\frac{2}{3}}=(-512)^{1 / 3}=\sqrt[3]{-512}=-8
\end{aligned}
$$

But remember the "fact" about polynomials. There should be 3 solutions in total.

What about the two missing solutions? Please see "Special Factors" inside the book cover. In particular:

$$
\begin{aligned}
& x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right) \quad \text { "Sum of Two cubes" } \\
& x^{3}+8^{3}=(x+8)\left(x^{2}-8 x+64\right) \\
& (x+8)\left(x^{2}-8 x+64\right)=0 \\
& x+8=0 \quad x^{2}-8 x+64=0 \\
& x=-8 \quad x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(64)}}{2(1)} \\
& x=\frac{8 \pm \sqrt{-192}}{2} \quad x=4 \pm 4 \sqrt{3} i
\end{aligned}
$$

Ex: Solving by squaring both sides

$$
\begin{gathered}
\sqrt{x-10}-4=0 \\
\sqrt{x-10}=4 \\
(\sqrt{x-10})^{2}=(4)^{2} \\
x-10=16 \\
x=26
\end{gathered}
$$

check

$$
\begin{aligned}
\sqrt{26-10}-4 & \stackrel{?}{=} 0 \\
\sqrt{16}-4 & \stackrel{?}{=} 0 \\
4-4 & \stackrel{?}{=} 0 \\
0 & =0
\end{aligned}
$$

Yes, $x=26$ is the solution!

An "extraneous solution" is a solution that does not satisfy the original equation. Squaring both sides, raising both sides to a rational exponent and multiplying by a variable can introduce extraneous solutions. If you do these operations, check the potential solutions in the original equation.

Example of an extraneous solution created by squaring both sides.

$$
x=2 \quad \text { one solution }
$$

$(x)^{2}=(2)^{2} \quad$ SQuare both sides
$x^{2}=4$ two solutions

$$
x=2,-2
$$

Example of an extraneous solution:

$$
\begin{aligned}
& \sqrt{x-5}+2=0 \\
& \sqrt{x-5}=-2 \\
& (\sqrt{x-5})^{2}=(-2)^{2} \\
& x-5=4 \\
& x=9
\end{aligned}
$$

Check $x=9$ in the original equation.

$$
\begin{aligned}
& \sqrt{9-5}+2=0 \\
& \sqrt{4}+2=0 \\
& 2+2=0 \\
& 4 \neq 0 \quad----------x=9 \text { is NOT } a \text { solution. }
\end{aligned}
$$

Check Solutions	
$x=5$	$x=1$
$\|5-3\| ?$	$\|1-3\| \stackrel{?}{=} 2$
$\begin{gathered} 12 \mid=2 \\ 2=2 \end{gathered}$	$\|-2\|=2$
OK	$\begin{gathered} 2=2 \\ \text { ok } \end{gathered}$
The solutions are $x=5,1$	

Ex: Solving an absolute value equation:

$$
|x-3|=2
$$

Equation 1:
$x-3=2$
$x=s$
$x=1$

The potential solutions are $x=5,1$

Feb 10-11:01 AM
$2|x-3|=8 \quad$ Isolate the $|\mid$ part first.

$$
\frac{x|x-3|}{2}=\frac{8}{2}
$$

$|x-3|=4 \quad$ equations.
Then create the two

Equation 1:	$x-3=4$ $x-3=-4$ $x=7$ $x=-1$

Compounding: this is when you are paid interest on the principal you have in an account.

$A=P\left(1+\frac{r}{n}\right)^{n t}$

Type of Compounding	$n=$
Yearly	1
Semi-annually	2
Quarterly	4
Monthly	12
Daily	365

n is the number of compoundings per year.
P is the principal
r is the APR(in decimal)
t is the number of years

Feb 12-11:29 AM
c) $A=750\left(1+\frac{r}{4}\right)^{4 \cdot 10}$

Q: what value for r will cause $A=1500$?

Solve $\quad 1500=750\left(1+\frac{r}{4}\right)^{40}$
First, isclate the exponential part

$$
\left(1+\frac{r}{4}\right)^{40}
$$

The End.

