

Write the quadratic equation in General(Quadratic) Form.

Identify the coefficients a, b, and c.
a) $2 x^{2}+3 x-7=0$
$a=2$
$b=3$
$c=-7$

What is a quadratic equation?
The short answer: A polynomial where the biggest exponent is two.

Definition: Quadratic equation in
General Form(Quadratic Form)

$$
a x^{2}+b x+c=0
$$

a, b and c are called coefficients
Write the quadratic equation in
General(Quadratic) Form.
Identify the coefficients a, b, and c.
b) $2 x^{2}=5 x-70$
$2 x^{2}-5 x+70=0$

$a=2$
$b=-5$

$c=70$

Write the quadratic equation in
General(Quadratic) Form.
Identify the coefficients a, b and c.
c) $X^{2}=9$

$$
\begin{aligned}
& \quad x^{2}-9=0 \\
& a=1 \\
& b=0 \\
& c=-9
\end{aligned}
$$

Write the quadratic equation in General(Quadratic) Form.

Identify the coefficients a, b, and c.
d) $2 x^{3}+3 x-7=0$

This is NOT a quadratic equation. Notice the exponent of 3.

Write the quadratic equation in General(Quadratic) Form.

Identify the coefficients a, b, and c.
e) $2 x^{2}=5 x-70+2\left(3+x^{2}\right)$

Combine like
terms.
$2 x^{2}=5 x-70+6+2 x^{2}$
$\begin{array}{ll}-2 x^{2} & -2 x^{2} \\ 0 & =5 x-64\end{array}$

This is actually a linear equation.

Write the quadratic equation in General(Quadratic) Form.

Identify the coefficients a, b, and c.
f) $x^{2}=9 x$

$$
x^{2}-9 x=0
$$

$a=1$
$b=-9$
$c=0$

Write the quadratic equation in
General(Quadratic) Form.
Identify the coefficients a, b, and c.
f) $\frac{1}{x^{2}}=9 x$

$$
\begin{gathered}
x^{-2}=9 x \\
X^{-2}-9 x=0
\end{gathered}
$$

Not quadratic because the exponent is in the denominator(or negative).

Recall -- a rule about exponents:

$$
X^{-n}=\frac{1}{X^{n}} \quad \text { and likewise } X^{n}=\frac{1}{X^{-n}}
$$

Example: Solve by factoring.

$$
\left\lvert\, \begin{array}{ll}
2 x^{2}+9 x+7=3 & \begin{array}{l}
\text { Before factoring, put all } \\
\text { terms on one side so it }
\end{array} \\
2 x^{2}+9 x+4=0 & \begin{array}{l}
\text { equals } 0 .
\end{array} \\
(2 x+1)(x+4)=0 & \text { Factor into linear factors. }
\end{array}\right.
$$

Remember: The solutions are the values that make the factors equal 0 .

The Zero-Factor Property:
If $a^{*} b=0$
then $a=0 \quad-O R-b=0$
($I \dagger$'s possible both equal 0 .)

The idea is: If you can write the quadratic equation as the product of two linear factors then you can solve by setting each linear factor equal to 0 .

The solutions are the values that make the factors equal 0 .

Example: Solve by factoring.

$$
\begin{aligned}
& x^{2}-10 x=-9 \\
& x^{2}-10 x+9=0 \\
& (x-9)(x-1)=0
\end{aligned}
$$

The solutions are $x=1,9$
\square

Example: Solve by factoring.

$$
2 x^{2}+x-15=0
$$

$$
(2 x-5)(x+3)=0
$$

set each linear factor $=0$
and solve:
$2 x-5=0 \quad x+3=0$
The solutions are: $x=\frac{5}{2}, x=-3$

Now we will solve by extracting square roots.
This means taking the square root of each side.
$x^{2}=4$
add 4 to both sides
$\sqrt{x^{2}}=\sqrt{4} \quad$ Take square root of both sides
$|x|=2$
$x= \pm 2$

Note: $\sqrt{X^{2}}=|X|= \pm X$

First we will solve by factoring:

$$
\begin{gathered}
x^{2}-4=0 \\
(x+2)(x-2)=0 \\
x=-2 \quad x=2
\end{gathered}
$$

The solutions are $x=-2,2$ or $x= \pm 2$

Note: this type of equation is called the
"difference of two squares" and is an example of a
"Special Factor". Please refer to inside cover of text.

In general:
Note: $d \geq 0$

$$
x^{2}=\alpha
$$

$$
\sqrt{x^{2}}=\sqrt{\alpha}
$$

$$
x= \pm \sqrt{\alpha}
$$

Aug 26-2:10 PM

Exercise

$$
\begin{aligned}
& \text { Write }(x-2)^{2}=11 \quad \begin{array}{l}
\text { in General Form } \\
a x^{2}+b x+c=0
\end{array} \\
& \qquad \begin{array}{cc}
(x-2)^{2}=11 & \\
(x-2)(x-2)=11 & \\
x^{2}-4 x+4=11 & \text { Use FOIL } \\
x^{2}-4 x-7=0 & \text { Minus 11 from each side. }
\end{array} \\
& \qquad \begin{array}{l}
\\
(x)
\end{array} \\
& \hline
\end{aligned}
$$

Q: Can this be solved by factoring?

Solve by extracting square roots.

$$
(x-2)^{2}=11 \quad \text { Isolate the }(\ldots)^{2}
$$

$$
\sqrt{(x-2)^{2}}=\sqrt{11} \quad \text { "Square Root" both sides. }
$$

$$
x-2= \pm \sqrt{11}
$$

$$
x=\underbrace{2 \pm \sqrt{11}}_{\text {exact solution }} \approx \underbrace{5.317,-1.317}_{\begin{array}{c}
\text { numerical } \\
\text { solutions }
\end{array}}
$$

Aug 26-2:14 PM

$$
x^{2}-4 x-7=0
$$

A: No, cannot be solved by factoring.
But we did solve it by taking square roots.

We will use the method of

Completing the Square

to convert the General Form to a form that can be solved by taking square roots.
$x^{2}-4 x-7=0 \quad$ Complete the Square $\quad\left(x---------------\quad(x)^{2}=11\right.$

How to complete the square:
Please see handout.
By completing the square for the equation $a x^{2}+b x+c=0 \quad$ we obtain the Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This formula provides the solutions to a quadratic equation.

Use the Quadratic Formula to solve:
$3 x^{2}+5 x-7=0$

Guidelines:

1) Make sure the equation is in General Form.
2) Identify the coefficients a, b, and c.
3) Substitute them into the formula and simplify.

$$
\begin{array}{ll}
x & =\frac{-(5) \pm \sqrt{5^{2}-4 \cdot 3 \cdot(-7)}}{2 \cdot 3} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-5 \pm \sqrt{109}}{6} \quad \text { Algebraic solutions } \\
x \approx 0.907,-2.574 \quad \text { Numerical solutions }
\end{array}
$$

The End

