Section 1.3

Modeling

To find x percent of y :
$\frac{X}{y}=$ decimal percentage
$\frac{X}{y}(100)=$ percentage

Jan 19-10:14 PM
a)

$$
\frac{68}{80}=.85=85 \%
$$

"68 is 85% of 80. ."
b) $.15 \times 123=18.45$
" 15% of 123 is 18.45. ."
c) $.08 \times 91=7.28$
" 8% of 91 is 7.28."
e) $2 * 23=46$
200% of 23 is $46 . "$

200\% of something is DOUBLE.
d) $1 \times 115=115$
" 100 percent of 115 is $115 . "$

Formula for percentage increase:

$$
\begin{aligned}
& \text { new }=\text { old }+ \text { amt of increase } \\
& \text { new } \left.=\frac{\text { old }}{}+\frac{\text { old (decimal }}{\text { Recent }}\right) \\
& \text { new }=\text { old }(1+\underset{\substack{\text { decimal } \\
\text { percent }}}{ }) \\
& \text { new }=01 d(1+r) \\
& \text { where } r=\text { \%increase(in decimal) }
\end{aligned}
$$

Formula for percentage decrease:
new = Old - amt of decrease
new $=$ old - old (decimal percent $)$
new $=$ old $(1-\underset{\text { percent }}{\operatorname{deiml}})$
new $=$ old $(1-r)$
where $r=\%$ decrease(in decimal)

$$
\begin{aligned}
\text { new }= & 1.93+1.93(.0621)=2.05 \\
& 1.93(1+.0621) \\
& 1.93(1.0621) \\
& \$ 2.05
\end{aligned}
$$

Aug 24-1:41 PM

```
new \(=15000+15000(.03)\)
    \(15000+450=15,450\)
```


$15000(1.03)$
$\$ 15450$

A decrease in students:

$$
\begin{aligned}
\text { New } & =600-600(0.06) \\
& =600(1-0.06) \\
& =564 \text { students }
\end{aligned}
$$

Fact: If 6% of the students are gone, then 94% of the students remain.
$600(0.94)=564$

A stock market decline:

$$
\text { new }=10,345-10,345(0.04)
$$

$$
=9931.2
$$

-- OR --
(0.96)10,345
96% of $10,345=9931.2$

Aug 24-1:49 PM

Formula for percent change:
$\%$ change $=\frac{(\text { new-old })}{\text { old }}$

This will give you the decimal percent.

$$
\begin{aligned}
& 13,500-12,000=1,500 \\
& \frac{\text { AMT INC }}{\text { old }}=\frac{1500}{12000}=.125=12.5 \% \\
& -- \text { OR -- } \\
& \frac{(\text { new old })}{\text { old }}=\frac{(13500-12000)}{12000}
\end{aligned}
$$

The conclusion can be stated in several ways:

1. The percentage change was -5.26%
2. The value decreased by 5.26%

Rates

When one quantity is divided by another its called a rate.

For example:

The Distance Formula

"distance is rate times time."

$$
\begin{aligned}
& d i r t \\
& d=r t \\
& d=\frac{60 \text { miles }}{\text { ton }} \cdot 2 \text { hour } \\
& =120 \text { mils }
\end{aligned}
$$

$$
\frac{\text { miles }}{\text { hours }}=m p h
$$

The perimeter of an object is the distance around the outside.

For many objects there is a formula for the perimeter based on its dimensions.

The two dimensions of a rectangle are LENGTH and WIDTH.

Perimeter of a rectangle:

W (width)

Aug 24-2:01 PM

Aug 24-2:10 PM

Let n be any integer, then:
$2 n \quad$ is an EVEN number
$2 n \pm 1$ is an ODD number

Natural Even Numbers $=\{2,4,6,8,10,12, \ldots .$. (numbers which are Natural AND Even)

Example: The sum of two consecutive even natural numbers is 26 . Find the numbers.

$$
\begin{aligned}
& 26=\text { first even }+ \text { second even } \\
& 26=2 n+2 n+2 \\
& 26=4 n+2 \\
& 24=4 n
\end{aligned}
$$

Recall:

Natural Numbers $=\{1,2,3,4, \ldots\}$
Example: The sum of two consecutive natural numbers is 25 . Find the numbers.

```
\(25=f i n t+\sec n \alpha\)
\(25=n+n+1\)
\(25=2 n+1\)
\(24=2 n\)
    \(12=n\)
```

The numbers are 12 and 13.

$$
\begin{aligned}
24 & =4 n \\
6= & n \\
12 & =2 n \\
26= & \frac{2 n}{12}+\frac{2 n+2}{14}
\end{aligned}
$$

The numbers are 12 and 14.

Jan 22-5:32 PM

The End.

