Section 1.2

Linear Equations in One Variable

$$
\begin{aligned}
& x=3: \\
& 3^{2} \stackrel{?}{=} 6+3 \\
& 9=9
\end{aligned}
$$

Yes, 3 is a solution.

$$
\begin{aligned}
& x=5: \\
& 5^{2} \stackrel{?}{=} 6+5 \\
& 25 \neq 11 \\
& \text { NO }
\end{aligned}
$$

No, 5 is not a solution.

The symbol

is called a radical sign.

The expression under it is called the radicand.

Example: $\sqrt{X-2}$
The radicand is $x-2$

The domain of an expression is the set of all valid values allowed for the variable involved.

There are two ways a value can FAIL to be in the domain:

1) If that value causes a denominator to be zero.
2) If it causes a negative value under a square root signor any even rooted radical).

Otherwise, the value is VALID, and it IS IN THE DOMAIN.
a) $\sqrt{x-5}$

Note: the radicand is the expression $x-5$
"The radicand must not be negative."

$$
\begin{aligned}
& 0 \leq x-5 \\
& 5 \leq x \\
& \text { domain }=\{5 \leq x<\infty\}
\end{aligned}
$$

Jan 12-2:24 PM

$$
\begin{aligned}
& \text { b) } \frac{5}{x-2} \quad \text { "You must not divide by } 0 . " \\
& x-2 \neq 0 \\
& x \neq 2 \\
& \text { domain }=\{\text { all } x \text { except } x=2\} \\
&=\{x \neq 2\}
\end{aligned}
$$

a)
$2 x=x+x$
$2 x=2 x$
Identically equal

Yes, the equation is an identity.
b) $2 x-4=2(x-2)$
$2 x-4=2 x-4$

Identically Equal

Yes, the equation is an identity.

The number of solutions to an equation.

An identity has an infinite number of solutions.

A conditional equation has a finite number of solutions.

A contradiction is an equation that has NO solutions.
c) $x^{2}=6+x$

If you can find even one value for x which does not satisfy the equation, then the equation in NOT an identity.

Let $x=0$:
No, the equation is not an identity.

$$
\begin{aligned}
& 0^{2} \neq 6+0 \\
& 0 \neq 6
\end{aligned}
$$

Definition: Linear Equation

A linear equation in one variable x is one that can be written as

$$
a x+b=0
$$

where $a \neq 0$.

Examples of linear equations in one variable:
a) $2 x+3=0$

$$
a=2 \quad b=3
$$

b) $5 x-3=0$

$$
a=5 \quad b=-3
$$

c) $-3 x=0$

$$
a=-3 \quad b=0
$$

d) $2 x+3=-7 x+2$

$$
9 x+1=0
$$

$$
a=9 \quad b=1
$$

Jan 12-2:42 PM

Two equations are equivalent if they have exactly the some solution set.

Q: How many solutions are there to a linear equation?

$$
\begin{aligned}
& a x+b=0 \\
& -b=-b \\
& a x=-b \\
& \frac{a x}{a}=\frac{-b}{a} \\
& x=\frac{-b}{a} \quad \text { Exactly one solution. }
\end{aligned}
$$

This is the unique solution to a linear equation in one variable.

Note: "unique" means one and only one.

Jan 12-2:44 PM

Generating equivalent equations:

1) Remove symbols of grouping, combine like terms, etc.
2) Add or Subtract same amount
to / from BOTH SIDES.
3) multiply or DIUIDE Both sides
by the same amount.
(as long as that amount is not zero)
4) Switch the two sides.

$$
\text { e.9. } \begin{aligned}
x & =2 \quad \text { is the same as } \\
2 & =x
\end{aligned}
$$

Solve for x :

$$
\text { a) } \begin{aligned}
4 x-8 & =0 \\
+8 & +8 \\
\frac{4 x}{4} & =\frac{8}{4} \\
x & =2
\end{aligned}
$$

$$
\text { b) } \left.\begin{array}{rl}
2 x+2=-3 \\
-2 & -2
\end{array}\right] \begin{aligned}
& \frac{2 x}{2}=\frac{-5}{2} \\
& x=\frac{-5}{2}
\end{aligned}
$$

ए

号

$$
\text { c) } \begin{aligned}
& 16 x-4=8 x+2 \\
&-8 x-8 x \\
& \hline 8 x-4=2 \\
&+4+4 \\
& \frac{8 x}{8}=\frac{6}{8} \\
& x=\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { d) } \begin{aligned}
3 x & =3 x+1 \\
-3 x & -3 x
\end{aligned} \\
\hline 0=1 \\
\text { but } 0 \neq 1 \\
\text { No Solution } \mid
\end{aligned}
$$

This equation is an example of a CONTRADICTION.

$$
\text { e) } \begin{aligned}
6(x-1)+4 & =3(7 x+1) \\
6 x-6+4 & =21 x+3 \\
6 x-2 & =21 x+3 \\
\frac{-6 x-3}{}=\frac{-6 x-3}{15} & =\frac{15 x}{15} \\
-\frac{1}{3} & =x
\end{aligned}
$$

The Least Common Denominator (LCD)
of a set of fractions is the smallest expression that each denominator divides evenly into.

To eliminate fractions, we can multiply both sides of an equation by the LCD.

$$
\text { f) } \begin{aligned}
& x+8=2(x+4)-x \\
& x+8=2 x+8-x \\
& x+8=x+8 \\
& \text { IDENTICALLY EQUAL }
\end{aligned}
$$

This equation is an identity!

Jan 12-3:03 PM

Multiplying by the LCD:
The LCD $=6$.
a) $\frac{x}{2}+\frac{x}{3}=4$

$$
\begin{gathered}
6\left(\frac{x}{2}+\frac{x}{3}\right)=4 * 6 \\
3 x+2 x=24 \\
5 x=24 \\
x=\frac{24}{5}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Multiplying by the LCD: } \\
& \text { The LCD }=12 \text {. } \\
& \begin{array}{l}
\text { b) } \frac{x}{3}+\frac{2 x}{4}=4 \\
\begin{aligned}
& 12\left(\frac{x}{3}+\frac{2 x}{4}\right)=12(4) \\
& 12 x+\frac{12 \cdot \frac{2 x}{4}}{}=48 \\
& 4 x+6 x=48 \\
& 10 x==48
\end{aligned} \quad x=\frac{48}{10}=4.8
\end{array}
\end{aligned}
$$

Cross Multiplying

$\frac{a}{b}=\frac{c}{d} \underset{\substack{\text { "is equivalent to" }}}{ } a d=c b$
as long as $b \neq 0 \quad \& d \neq 0$
b) $\frac{2}{x-3}=\frac{3}{x+1}$

An extraneous solution is one that does not satisfy the original equation.

Some ways to create an extraneous solution:

1) Squaring both sides
2) Multiplying or dividing by a factor containing a variable expression.

$$
\left.\begin{array}{c}
\frac{1}{x-2}=\frac{3}{x+2}-\frac{6 x}{x^{2}-4} \quad \begin{array}{c}
\text { Notice: } \\
(x-2)(x+2)=x^{2}-4
\end{array} \\
\frac{(x-2)(x+2)}{1} \cdot \frac{1}{x-2}=\left(\frac{3}{x+2}-\frac{6 x}{x^{2}-4}\right) \cdot\left(\frac{x^{2}-4}{1}\right) \\
x+2
\end{array}\right)
$$

The End.

