Section P. 1

Real Numbers

and

Intervals

Natural $=\{1,2,3, \ldots\}$

Whole $=\{0,1,2,3, \ldots\}$

Integers $=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$

Rational $=\{p / q \mid p$ and q are integers \}

共

Aug 17-1:49 PM

Irrational numbers have a decimal sequence which never terminates or repeats:

Hint: the square root of a prime number is irrational.

$$
\begin{aligned}
& \sqrt{\text { prime }}=\text { irrational } \\
& \sqrt{2}=\text { irrational } \\
& \sqrt{3}=\text { irrational } \\
& \sqrt{5}=\text { irrational }
\end{aligned}
$$

Converting rational numbers to decimals:
The sequence will terminate or repeat.
A line is drawn over the repeating pattern.
$\begin{array}{ll}\frac{1}{8}==0.125 & \text { number terminates } \\ \frac{1}{12}==0.083333 \ldots= \\ \frac{1}{7}=0.08 \overline{3} \\ \text { pattern repeats }\end{array}$
pattern repeats

Aug 17-1:51 PM

$a<b$

" a is (strictly) less than b " a lies to the left of b on the number line.

$a \leq b$

" a is less than or equal to b "
a lies to the left of b on the number line or
$a=b$.

Let x be a real number.
Write the inequality in interval notation and graph it on the real number line.
a)
Inequality:
$2<x<5$
Interval notation:
$(2,5)$
Graphically:

Let x be a real number.
Write the inequality in interval notation and graph it on the real number line.
b)

Inequality:	$2 \leq x \leq 5$
Interval notation:	$[2,5]$
Graphically:	

Let x be a real number.
Write the inequality in interval notation and graph it on the real number line.
d)
$\begin{array}{ll}\text { Inequality: } & 2 \leq x<5 \\ \text { Interval notation: } & {[2,5)}\end{array}$
Graphically:

An interval that is contained between two real numbers is called a BOUNDED INTERVAL.

The previous intervals are all bounded.

Write the inequality in interval notation and graph it on the real number line.
a)

Aug 17-1:57 PM

Write the inequality in interval notation and graph it on the real number line.

The inequality
$-\infty<x<\infty$
means "all real numbers."

This can be written as $(-\infty, \infty)$
and also as

Let a be a real number:

$|3|=3$
$|-3|=3$

The magnitude of a number is its distance from 0 on the number line.

This is also called the absolute value.

Aug 22-10:53 AM

The sign of a number tells you if it lies to the left or right of ZERO on the number line.

A number's sign can be:
negative, zero, positive

Evaluate the following expressions:
a)

$$
a=3
$$

$-a=-3$
c)

$$
\begin{aligned}
& a=-9 \\
& -a=-(-9)=9
\end{aligned}
$$

b)

$$
a=-3
$$

$$
-a=-(-3)=3
$$

[^0]Jan
d)

$$
\begin{aligned}
a & =|-4| \\
a & =4 \\
-a & =-4
\end{aligned}
$$

e)

$$
\begin{aligned}
a & =|4-(-3)| \\
a & =|4+3| \\
a & =17 \mid \\
a & =7 \\
-a & =-7
\end{aligned}
$$

Example:

Let p and q be defined as follows:
p : It is raining
q : The grass is wet
Then $p \not \neg q$
means,
IF it is raining THEN the grass is wet.

Q: Is this VALID or NOT VALID?

Implications

A logical statement is a statement that is either TRUE or FALSE.
Letters are often used to represent statements.
$p \leadsto q \quad \begin{aligned} & \text { is an implication and is read } \\ & \text { "p implies q" }\end{aligned}$

This means,
IF p is true THEN q is true.

An implication can be VALID or NOT VALID.

Given the implication

$$
p \Rightarrow q
$$

the implication

$$
q \leadsto p \text { is called the CONVERSE }
$$

In this case that would correspond to:
IF the grass is wet THEN it is raining.

Q: Is this VALID or NOT VALID?
Hint: Can you find a counter example?
Note: A counter example is a situation where the second statement is true but the first is false.

IF the grass is wet THEN it is raining.

This is NOT VALID.
There are many ways the grass could be wet even though it is not raining.

1. It just stopped raining.
2. Someone sprayed the grass with a hose.
3. Some drunk guys just came by.
... and more.

The End.

Aug 18-3:38 PM

[^0]: -

