Section P.1 Real Numbers and Intervals

Natural = { 1, 2, 3, ... } Whole = { 0, 1, 2, 3, ... } Integers = { ..., -3, -2, -1, 0, 1, 2, 3, ... } Rational = { $p/q \mid p$ and q are integers } "where"

Aug 21-12:48 PM

Jan 17-11:05 AM

Rational = { p/q | p and q are integers } { p/q where p and q are integers}

Examples:

Converting rational numbers to decimals: The sequence will terminate or repeat. A line is drawn over the repeating pattern. $\frac{1}{8} = = 0.125$ number terminates $\frac{1}{12} = = 0.083333... = 0.083$ pattern repeats $\frac{1}{7} = = 0.142857142857... = 0.142857$ pattern repeats

Aug 17-1:49 PM

Irrational numbers have a decimal sequence which never terminates or repeats: $\pi \approx 3.1415926...$ TApproximately equal to Hint: the square root of a prime number is irrational. $\sqrt{prime} = irrational$ $\sqrt{2} = irrational$ $\sqrt{3} = irrational$ $\sqrt{5} = irrational$

a ≤ b

"a is less than or equal to b"

a lies to the left of b on the number line or

a = b.

Let x be a real number.		
Write the inequality in interval notation and graph it on the real number line.		
a)		
Inequality: 2 < x	< 5	
Interval notation: (2,5	;)	
	\leftarrow	
Graphically: <c< td=""><td>)</td></c<>)	

Aug 17-1:55 PM

Aug 17-1:57 PM

Let x be a real number. Write the inequality in interval notation and graph it on the real number line. c) Inequality: $2 < x \le 5$ Interval notation: (2, 5]Graphically: $(----)^2 = (---)^2$

An interval that is contained between two real numbers is called a

BOUNDED INTERVAL.

The previous intervals are all bounded.

Aug 17-1:57 PM

Jan 14-10:55 PM

An UNBOUNDED interval has no limit on its size.

We can say that is "goes to infinity."

 ∞ is the symbol for *infinity*.

Note: ∞ is not a number.

Write the inequality in interval notation and graph it on the real number line.		
a)		
Inequality:	2 < <i>x</i> <∞	
Interval notation:	(z, æ)	
Graphically:	<> 0 - 1 >	

Aug 17-1:57 PM

Write the inequality in interval notation and graph it on the real number line.		
d)		
Inequality:	-∞< x <u><</u> 2	
Interval notation:	(-m,z]	
Graphically:	<>	

The inequality -∞ < X < ∞ means "all real numbers."	
This can be written as $(-\infty, \infty)$ and also as	

Aug 17-2:14 PM

Let a be a real number:

-31 = 3

- |a| "the absolute value of a." |3| = 3
- The *sign* of a number tells you if it lies to the left or right of ZERO on the number line. A number's sign can be:

negative, zero, positive

$$b) \\ a = -3 \\ -a = -(-3) = 3$$

Jan 11-11:36 AM

e) a=|4-(-3) | a=|4+3| a= 17| a= 7 -a= -7

Jan 13-11:26 AM

Jan 11-11:40 AM

IF the grass is wet THEN it is raining.

This is NOT VALID.

There are many ways the grass could be wet even though it is not raining.

- 1. It just stopped raining.
- 2. Someone sprayed the grass with a hose.
- 3. Some drunk guys just came by.

... and more.

Aug 18-3:38 PM

