MS 100 Sample Test 2 SOLUTIONS (Sec 1.4-1.7)

01. (04 pts) What is the standard form of a complex number?

Let a and b be real numbers:

a + bi is the standard form of a complex number. a is called the "real part" and b i is called the "imaginary part."

02. (04 pts) Perform the operation and express the answer in standard form: (6 + 3i) + (2 - 5i)

The operation is addition. Add or subtract the real parts and then add or subtract the imaginary parts. **answer** = 8 - 2i

03. (04 pts) Perform the operation and express the answer in standard form: (6 + 3i)(2 - 5i)

The operation is multiplication. Use the FOIL method: $(6+3i)(2-5i) = 12 - 30i + 6i - 15i^2 = 12 - 24i - 15(-1) = 12 - 24i + 15 = 27 - 24i$

answer = 27 - 24 i

04. (04 pts) Perform the operation and express the answer in standard form: (6 + 3i) - (2 - 5i)

The operation is subtraction. Add or subtract the real parts and then add or subtract the imaginary parts.

(6+3i) - (2-5i) = 6+3i - 2 - (-5i) = 6+3i - 2 + 5i = 4 + 8i

answer = 4 + 8 *i*

05. (04 pts) Perform the operation and express the answer in standard form: $\frac{(6+3)}{(2-5)}$

Multiply the fraction by $\frac{(2+5i)}{(2+5i)}$ which just equals 1. Note that (2-5i)(2+5i) = 29

 $\frac{(6+3\,i)}{(2-5\,i)}\,\frac{(2+5\,i)}{(2+5\,i)} = \frac{(6+3\,i)(2+5\,i)}{29} = \frac{12+30\,i+6\,i+15\,i^2}{29} = \frac{12+30\,i+6\,i+15\,(-1)}{29} = \frac{-3+36\,i}{29} = \frac{-3}{29} + \frac{36}{29}\,\mathbf{i}$

06. (04 pts) The expression $\sqrt{-24}$ is equivalent to: a) $-\sqrt{24}$ b) $-i\sqrt{24}$ c) $\pm 2i\sqrt{6}$ d) $2i\sqrt{6}$

This is a multiple choice question. $\sqrt{-24} = i\sqrt{24} = i\sqrt{4*6} = i\sqrt{4} * \sqrt{6} = i2\sqrt{6} = 2i\sqrt{6}$

07. (04 pts) Use the Quadratic Formula to find the imaginary solutions to $2x^2 - 4x + 5 = 0$.

 $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(5)}}{2(2)} = \frac{4 \pm \sqrt{(-4)^2 - 4(2)(5)}}{2(2)} = \frac{4 \pm \sqrt{-24}}{4} = \frac{4 \pm 2i\sqrt{6}}{4} = \frac{4}{4} \pm \frac{2i\sqrt{6}}{4} = 1 \pm \frac{\sqrt{6}}{2}i$

08. (04 pts) Solve $(x+2)^{\frac{2}{3}} = 9$ Raise both sides to the $\frac{3}{2}$ power. Note: $9^{\frac{3}{2}} = (9^{\frac{1}{2}})^3 = (\sqrt{9})^3 = (3)^3 = 27$ $((x+2)^{\frac{2}{3}})^{\frac{3}{2}} = 9^{\frac{3}{2}}$ $(x+2)^1 = 9^{\frac{3}{2}}$ $x = 9^{\frac{3}{2}} - 2 = 27 - 2 = 25$ 09. (04 pts) Solve $\sqrt{2x} - 10 = 0$. x = 50Isolate the $\sqrt{}$ and then square both sides. $\sqrt{2x} - 10 = 0$ $\sqrt{2x}$ = 10 $\left(\sqrt{2x}\right)^2 = (10)^2$ 2 x = 100 *x* = 50 10. (04 pts) Solve $\sqrt{5x+1} = \sqrt{3x-7}$. **x** = _____ Square both sides. $\left(\sqrt{5x+1}\right)^2 = \left(\sqrt{3x-7}\right)^2$ 5x+1 = 3x-72x+1 = -72x = -8x = -411. (04 pts) Solve 2 x³ = 8 x. x = _____ 11. Solution: $2x^3 = 8x$ $2x^3 - 8x = 0$ $2x(x^2-4)=0$ 2x(x+2)(x-2) = 0

12. (04 pts) Solve $2x^3 = 8$. x =_____ Be sure to find ALL complex solutions.

12. Solution for this question will not be provided.

 $x = \{0, -2, 2\}$

13. (04 pts) Use the compounding formula $A = P(1 + \frac{r}{n})^{nt}$ to determine the value an investment account if \$500 is invested for 7 years, compounded monthly at an APR of 4.9%.

13. Solution: P = 500; monthly means n = 12; t = 7 plug in and calculate: $A = 500 \left(1 + \frac{0.049}{12}\right)^{(12.7)} \approx 704.09

14. (04 pts) Use the compounding formula $A = P(1 + \frac{r}{r})^{nt}$ to determine the APR required for an investment to reach a value of \$700 if \$500 is invested for 7 years, compounded quarterly.

14. Solution: A = 700; P = 500; quarterly means n = 4; t = 7 solve for r: $700 = 500 \left(1 + \frac{r}{4}\right)^{(4.7)}$

 $700 = 500 \left(1 + \frac{r}{4}\right)^{(4 \cdot 7)}$ divide both sides by 500 $\frac{700}{500} = (1 + \frac{r}{4})^{28}$ $\left(\frac{700}{500}\right)^{\frac{1}{28}} = \left(\left(1 + \frac{r}{4}\right)^{28}\right)^{\frac{1}{28}}$ raise both sides the reciprocal exponent and apply exponent rules. $\left(\frac{700}{500}\right)^{\frac{1}{28}} = 1 + \frac{r}{4}$ subtract a 1 from both sides $\left(\frac{700}{500}\right)^{\frac{1}{28}} - 1 = \frac{r}{4}$ $4\left(\left(\frac{700}{500}\right)^{\frac{1}{28}}-1\right)=r\approx 0.0484=4.84\%$ multiply both sides by 4 and calculate

```
15. (04 pts) Consider the inequality 2x - 4 < 8.
a) Solve the inequality.
                                              b) Express the answer in interval notation.
2x-4<8
                                                         (-\infty, 6)
2x < 12
 -\infty < x < 6
                                              <-----)
                                                 -----6-----6------
c) Graph the solution on the real number line.
```

d) Is the solution set BOUNDED or UNBOUNDED?

16. (04 pts) Consider the inequality $-6 \le 2x - 4 < 8$. a) Solve the inequality. $-6 \le 2x - 4 < 8$ [-1, 6) $-2 \le 2 x < 12$

 $-1 \le x < 6$

b) Express the answer in interval notation.

c) Graph the solution on the real number line.	<	[) 1 06
d) Is the solution set BOUNDED or UNBOUNDED?		
17. (04 pts) Consider the inequality $ 2x - 4 < 8$. a) Solve the inequality.	b) Express the ans	swer in interval notation.
2x-4 < 8 This is "Type 1 Absolute Value Ine -8 < 2x - 4 < 8 -4 < 2x < 12 -2 < x < 6	zquality"	(-2,6)
c) Graph the solution on the real number line.	۲	() 2 0 6

d) Is the solution set $\ensuremath{\mathsf{BOUNDED}}$ or UNBOUNDED?