Wind speed (mph) |
Power (Watts) |
|||||||

0 | 0 | |||||||

5 | 75 | |||||||

10 | 588 | |||||||

15 | 1980 | |||||||

20 | 4700 | |||||||

25 | 9190 | |||||||

30 | 15876 | |||||||

1 | 499.79 |
Calculate the slope of the linear regression (trend line) for the data. | ||||||

2 | -2866.93 |
Calculate the y-intercept of the linear regression (trend line) for the data. | ||||||

3 | positive |
Is the correlation positive or negative? | ||||||

4 | 17124.5 |
Calculate the projected power production in Watts for a wind speed of 40 mph. | ||||||

5 | 7.74 |
Calculate the wind speed for which power production is 1000 Watts. | ||||||

6 | 0.9064 |
Determine the correlation coefficient r. | ||||||

7 | high or strong |
Is the correlation none, low, moderate, high, or perfect? | ||||||

8 | non-linear |
Does the relationship appear to be linear or non-linear? | ||||||

9 | 0.8216 |
Determine the coefficient of determination. | ||||||

10 | 82.16% |
What percent in the var in wind speed accounts for the var in the kilowatt hours? | ||||||

11 | Yes |
In this case, is there causation? | ||||||

[ans will vary] |
Why or why not? |