____ 1. Grades: A, B, C, D, F | A. Nominal | |
____ 2. Favorite soy sauce: Angostura, Kikkoman, Sanbushi, Yamasa | B. Ordinal | |
____ 3. Year: 1981, 1987, 1999, 2002 | C. Interval | |
____ 4. Soy sauce bottle volumes: 500ml, 1000ml, 1800ml | D. Ratio |
The table is of retail prices for 1000 ml soy sauce on Pohnpei on 04 September 2002
Store | Brand | Price |
---|---|---|
Nakasone | Sanbushi | 2.60 |
Wall Mart | Kikkoman | 3.27 |
Yoshie | Kikkoman | 3.45 |
Palm Terrace | Kikkoman | 3.69 |
Ambros | Kikkoman | 3.85 |
Best Buy | Kikkoman | 3.89 |
Josaiah | Kikkoman | 3.90 |
Ace Commercial | Yamasa | 3.95 |
Nakasone | Kikkoman | 3.97 |
4TY | Yamasa | 4.25 |
Panuelo | Yamasa | 4.75 |
En's Seven Star | Yamasa | 4.95 |
Bins | Frequency | Relative Frequency |
---|---|---|
_______ | _______ | _______ |
_______ | _______ | _______ |
_______ | _______ | _______ |
_______ | _______ | _______ |
_______ | _______ | _______ |
Sum: | _______ | _______ |
Sunday evening I ran 14 laps of the track with a mean lap time of 2.59 minutes and standard deviation of 8.00 seconds. Construct a 95% confidence interval using a student's t-distribution for my population mean lap time.
Confidence interval statistics | |||
---|---|---|---|
Find a t_{c} value from a confidence level c and sample size n | t_{c} | =TINV(1-c,n-1) | |
Calculate an error tolerance E of a mean for any n ≥ 5 using sx. | E | =t_{c}*sx/SQRT(n) | |
Calculate a confidence interval for a population mean µ from a sample mean x and an error tolerance E | x-E≤ µ ≤x+E | ||
Hypothesis Testing | |||
Degrees of freedom | df | = n-1 | =COUNT(data)-1 |
Calculate a t-statistic (t) | t | (x - µ)/(sx/sqrt(n)) | |
Calculate t-critical for a two-tailed test | t_{c} | =TINV(α,df) | |
Calculate a p-value from a t-statistic t | p | = TDIST(ABS(t),df,#tails) |