College of Micronesia – FSM P.O. Box 159 Kolonia, Pohnpei

Course Outline Cover Page

<u>VEE 235</u>
Department and Number

Digital Electronics II
Course Title

	cription: Further exp	_	*	ng registry circuits,
Prepared by	y: Gardner Edgar		State: Pohnpei Campus	
Lecture Laboratory	Hours per Week 3/6	16/8	Total Hours 48 ester Credits:	Semester Credits 3
Degr Adv Cert Rem		ree Elective	XX	
Prerequisite	e Course(s): <u>VEE 135</u>	5 Digital Electronics I		
Signature, Chairman, Curriculum Committee			Date Approved by Committee	
Signature, Pre	esident, COM-FSM		Date Appro	oved by the President

General Objective:

This course serves as a continuation study of digital electronics. It includes the study of digital function circuits such as shift & storage register circuits, memory circuits, counter circuits, adder/subtractor circuits, A/D & D/A converters, and data selector & distribution circuits.

Learning Outcomes: Upon successful completion of this course the student will be able to:

- 1. Describe the basic operating principles of registers and memory circuits.
- 2. Identify the purpose and probe the input and output of a 4-bit storage register.
- 3. Identify the purpose and probe the input and output of a 4-bit shift register.
- 4. Identify the purpose and probe the input and output of an 8-bit shift register.
- 5. Describe the normal operation and the characteristics of a 64-bit memory circuit.
- 6. Describe how counting circuits perform arithmetic functions.
- 7. Recognize the normal operation of a ripple counter circuits.
- 8. Describe the purpose of an up counter circuits and probe its outputs.
- 9. Describe the purpose of a down counter circuits and probe its outputs.
- 10. Describe the function and the operating characteristics of a 4-bit adder circuit.
- 11. Describe the normal operation of a 4-bit subtractor circuit.
- 12. Explain the basic operating principles of conversion and data circuits.
- 13. Identify the purpose of a D/A conversion circuit and its operating characteristics.
- 14. Identify the purpose and describe the basic operation of a data selector circuit and measure its output signals.
- 15. Describe the function of a data distribution circuit and its operating characteristics and measure its output signals.

Outline of Content: This course contains:

1. Introduction to Registers and Memory

- a. Data, bit, and byte
- b. Serial & Parallel Data Transfer
- c. Identification and purpose of a Shift Register & Storage Register.

2. 4-Bit Storage Register

- a. Purpose of a 4-bit Storage Register
- b. Output predictions
- c. Input and output measurements
- d. Normal operation

3. 4-Bit Shift Register

a. Purpose of a 4-bit Shift Register

- b. Left & Right Shifts
- c. Input & Output predictions and actual measurements
- d. Normal operation

4. 8-Bit Shift Register

- a. Purpose of a 8-bit Shift Register
- b. Synchronous & asynchronous data transfer
- c. Input & Output predictions and measurements
- d. Normal operation

5. 64-Bit Memory Circuit

- a. Purpose of a 64-bit Memory circuit
- b. Word, address, read, write, RAM, ROM volatile and nonvolatile
- c. Input & Output predications and measurements
- d. Normal operation

6. Introduction to Arithmetic Counting Circuits

- a. Purpose of a counter
- b. Modulus
- c. Basic synchronous and asynchronous counter circuits
- d. Counter circuits used as timing circuits
- e. Purpose of an adder circuit
- f. Adder circuits used in addition, multiplication, subtraction, and division
- g. Basic half and full adder circuits

7. Ripple Counter

- a. Purpose of a ripple counter
- b. Various modulus ripple counter circuits
- c. Output predictions and measurements
- d. Normal operation

8. Up Counters

- b. Purpose of an Up Counter Circuit
- c. Free run and single step circuits of an up counter
- d. Output predictions and measurements
- e. Normal operation

9. Down Counters

- a. Purpose of a Down Counter Circuit
- b. Free run and single step circuits of a down counter circuit
- c. Outputs predictions and measurements
- d. Normal operation

10. 4-Bit Adder

- a. Purpose of a 4-Bit Adder Circuit
- b. Serial & Parallel full adder circuits
- c. Outputs predictions and measurements
- d. Normal operation

11. 4-Bit Subtractors

- a. Purpose of a 4-Bit Subtractor Circuit
- b. Two's complement
- c. Output predictions and measurements
- d. Normal operation

12. Introduction to Conversion and Data Circuits

- a. Purpose of conversion circuits
- b. Basic A/D & D/A circuits
- c. Basic data selector & data distributor
- d. Purpose of data circuits
- e. Normal operation of a R/2R ladder D/A converter

13. D/A Conversion

- a. Purpose of D/A Conversion Circuits
- b. Binary weighted D/A converter circuits
- c. R/2R ladder D/A converter circuits and resolution
- d. Outputs predictions and measurements of a R/2R ladder converter

14. Data Selector Circuit

- a. Purpose of a Data Selector Circuit
- b. Outputs predictions and measurements
- c. Normal operation

15. Data Distribution Circuit

- a. Purpose of Data Distributor Circuits
- b. Output predictions & measurements
- c. Normal operation

Learning Outcomes:

On completion of this course the learner will be able to:

Learning Outcome 1 Describe the basic operating principles of registers and memory circuits.

Assessment Criteria

- a. Describe the terms data, bit, and byte.
- b. Describe serial data transfer.

- c. Describe parallel data transfer.
- d. Identify the purpose of a register
- e. Describe storage and shift registers

Assessment Method

Multiple choice questions Short answer questions Quiz

Learning Outcome 2

Identify the purpose and probe the input and output of a 4-bit storage register.

Assessment Criteria

- a. Identify the purpose of a 4-bit storage register.
- b. Recognize 4-bit storage register circuits
- c. Predict outputs of a 4-bit storage register.
- d. Probe the inputs and outputs of a 4-bit storage register.
- e. Recognize normal operation of a 4-bit storage register.

Assessment Method

Multiple choice questions Short answer questions Practical Exercises Quiz

Learning Outcome 3

Identify and describe the function and probe the input and output of a 4-bit shift register.

Assessment Criteria

- a. Identify the purpose of a 4-bit shift register.
- b. Describe right & left shifts.
- c. Recognize 4-bit shift register circuits.
- d. Predict outputs of a 4-bit shift register.
- e. Probe the inputs and outputs of a 4-bit shift register.
- f. Recognize normal operation of a 4-bit shift register.

Assessment Method

Multiple choice questions Short answer questions Practical exercises Quiz

Learning Outcome 4

Identify and describe the function and probe the input and output of an 8-bit shift register.

Assessment Criteria

- a. Identify the purpose of an 8-bit shift register.
- b. Describe synchronous and asynchronous data transfer.
- c. Recognize 8-bit shift register circuits.
- d. Predict the outputs of an 8-bit shift register.

- e. Probe the inputs & outputs of an 8-bit shift register.
- f. Recognize normal synchronous & asynchronous operation of an 8-bit shift register.

Assessment Method

Multiple choice questions Short answer questions Practical exercises Quiz

Learning Outcome 5

Describe the normal operation and the characteristics of a 64-bit memory circuit.

Assessment Criteria

- a. Identify the purpose of a 64-bit memory circuit.
- b. Describe word, address, read, write, RAM, ROM volatile, and nonvolatile.
- c. Recognize 64-bit memory circuits.
- d. Predict outputs of a 64-bit memory circuit.
- e. Probe the outputs of a 64-bit memory circuit.
- f. Recognize normal operation of a 64-bit memory circuit.

Assessment Method

Multiple choice questions Short answer questions Practical exercises/tests

Learning Outcome 6

Describe how counting circuits perform arithmetic functions.

Assessment Criteria

- a. Identify the purpose of a counter.
- b. Describe Modulus.
- c. Recognize basic synchronous and asynchronous counter circuits.
- d. Describe how a counter divides and is used as a timing circuit.
- e. Identify the purpose of an adder.
- f. Describe how adders are used in addition, multiplication, subtraction, and division.
- g. Recognize basic half & full adder circuits.

Assessment Method

Multiple choice questions Short answer questions Quiz

Learning Outcome 7

Recognize the normal operation of a ripple counter circuits.

Assessment Criteria

- a. Identify the purpose of a ripple counter.
- d. Describe a basic ripple counter circuit.
- e. Recognize various modulus ripple counter circuits.
- f. Predict & probe outputs of a ripple counter.
- g. Recognize normal operation of a ripple counter.

Assessment Method

Multiple choice questions Short answer questions Practical Exercises Quiz

Learning Outcome 8

Describe the purpose of an up counter circuits and probe its outputs.

Assessment Criteria

- a. Identify the purpose of an up counter.
- b. Describe a basic up counter circuit.
- c. Recognize free run & single step circuits of an up counter.
- a. Predict and measure outputs of an up counter.
- b. Recognize normal operation of an up counter.

Assessment Method

Multiple Choice Questions Short Answer Questions Practical exercises Quiz

Learning Outcome 9:

Describe the purpose of a down counter circuits and probe its outputs.

Assessment Criteria:

- a. Identify the purpose of a down counter.
- b. Describe a basic down counter circuit.
- c. Recognize free run & single step circuits of a down counter
- a. Predict and probe the outputs of a down counter.
- b. Recognize normal operation of a down counter.

Assessment Method:

Multiple Choice Questions Short Answer Questions Practical exercises Quiz

Learning Outcome 10: Describe the function and the operating characteristics of a 4-bit adder circuit.

Assessment Criteria: a. Identify the purpose of a 4-bit adder.

b. Describe adder circuits.

c. Recognize serial & parallel full adder circuits.a. Predict and probe the outputs of a 4-bit adder.

b. Recognize normal operation of a 4-bit adder.

Assessment Method: Multiple Choice Questions

Short Answer Questions

Practical exercises

Quiz

Learning Outcome 11: Describe the normal operation of a 4-bit subtractor circuit.

Assessment Criteria: a. Identify the purpose of a 4-bit subtractor.

b. Describe Two's complement

c. Recognize serial & parallel full subtractor circuits.

d. Predict and probe outputs of a 4-bit subtractor.

e. Recognize normal operation of a 4-bit subtractor.

Assessment Method: Multiple Choice Questions

Short Answer Questions

Practical exercises

Quiz

Learning Outcome 12: Explain the basic operating principles of conversion and data circuits.

Assessment Criteria: a. Identify the purpose of conversion circuits.

b. Recognize basic A/D & D/A circuits.

c. Identify the purpose of data circuits.

e. Recognize basic data selector and data distributor.

f. Recognize normal operation of a R/2R ladder D/A

converter

Assessment Method: Multiple Choice Questions

Short Answer Questions

Quiz

Learning Outcome 13: Identify the purpose of a D/A conversion circuit and its operating characteristics.

Assessment Criteria:

- a. Identify the purpose of D/A conversion circuits.
- b. Recognize binary weighted D/A converter circuits.
- c. Recognize R/2R ladder D/A converter circuits and describe resolution.
- d. Predict and measure the outputs of a R/2R ladder D/A converter

Assessment Method:

Multiple Choice Questions Short Answer Questions Practical exercises Quiz

Learning Outcome 14:

Identify the purpose and describe the basic operation of a data selector circuit and measure its output signals.

Assessment Criteria:

- a. Identify the purpose of data selector circuits.
- b. Recognize data selector circuits.
- c. Predict and measure the outputs of a data selector circuit.
- d. Recognize normal operation of a data selector circuit.

Assessment Method:

Multiple Choice Questions Short Answer Questions Practical exercises Quiz

Learning Outcome 15:

Describe the function of a data distribution circuit and its operating characteristics and measure its output signals.

Assessment Criteria:

- a. Identify the purpose of data distributor circuits.
- b. Recognize distributor circuits.
- c. Predict and measure outputs of a data distributor circuit.
- d. Recognize normal operation of a data distributor circuit.

Assessment Method:

Multiple Choice Questions Short Answer Questions Quiz

Required Course Materials:

1. Instructor:

- a. CAI Classroom with whiteboard or chalkboard
- b. Laboratory equipment with tools of the trade
- c. Text, Teacher's Resource Guide, workbook
- d. Overhead projector, transparencies

2. Student:

- a. Text(s), handouts provided by instructor
- b. Ring binder
- c. College ruled note sheet, pencil or pen
- d. Scientific calculator

Reference Materials:

Principles of Digital Electronics, Seventh Edition Thomas L. Floyd

Method of Instruction:

- 1. Computer Aided Instruction
- 2. Practical/Experimentation
- 3. Lecture/Demonstration

Evaluation:

Final Grade for this course will be based on meeting the course requirements at the following percentage rates:

```
90% - 100% A – Superior
80% - 89% B – Above Average
70% - 79% C – Average
60% - 69% D – Below Average
0 % - 59% F – Failure
```

Attendance:

The COM-FSM attendance policy will apply