Chapter 4 Rational Functions and Conics

Section 4.2 Graphs of Rational Functions

Section Objectives: Students will know how to sketch the graph of a rational function.

- I. Analyzing Graphs of Rational Functions (pp. 341-343) Pace: 15 minutes
- Draw attention to the **Guidelines for Analyzing Graphs of Rational Functions** and the *Technology* feature on page 341 of the text.

Example 1. Sketch the graph of each of the following functions.

a) $f(x) = \frac{x+1}{x}$.	
y-Intercept:	None
x-Intercept:	(-1, 0)
Vertical asymptote:	x = 0
Horizontal asymptote:	y = 1
Additional points:	(-2, 0.5), (-1.5, 1/3), (1, 2)

Course/Section Lesson Number Date

II. Slant Asymptotes (p. 344)

Pace: 10 minutes

• Add one more rule to the **Rules for Asymptotes of a Rational Function** from Section 4.1.

If n = m + 1, then the graph of *f* has a slant asymptote at y = q(x), where q(x) is the quotient obtained from the division algorithm.

III. Application (p. 345)

Pace: 5 minutes

Example 3. The cost of producing x units is $C = 0.25x^2 + 5x + 78$. The average cost per unit is

$$\overline{C} = \frac{0.25x^2 + 5x + 78}{x} = 0.25x + 5 + \frac{78}{x}.$$

Find the number of units that should be produced to minimize the average cost. Graph this function on a graphing utility, then use the "minimum" command. $x \approx 17.66$

• Assign the *Writing About Mathematics* on page 345 of the text.