Chapter 4 Rational Functions and Conics

Section 4.2 Graphs of Rational Functions

Section Objectives: Students will know how to sketch the graph of a rational function.
I. Analyzing Graphs of Rational Functions (pp. 341-343) Pace: 15 minutes

- Draw attention to the Guidelines for Analyzing Graphs of Rational Functions and the Technology feature on page 341 of the text.

Example 1. Sketch the graph of each of the following functions.
a) $f(x)=\frac{x+1}{x}$.

$$
\begin{array}{ll}
y \text {-Intercept: } & \text { None } \\
x \text {-Intercept: } & (-1,0) \\
\text { Vertical asymptote: } & x=0 \\
\text { Horizontal asymptote: } & y=1 \\
\text { Additional points: } & (-2,0.5),(-1.5,1 / 3),(1,2)
\end{array}
$$

b) $g(x)=\frac{x-2}{x^{2}-2 x-8}$

$$
\begin{array}{ll}
y \text {-Intercept: } & (0,0.25) \\
\text {-Intercept: } & (2,0) \\
\text { Vertical asymptotes: } & x=-2 \text { and } x=4 \\
\text { Horizontal asymptote: } & y=0 \\
\text { Additional points: } & (-4,-0.375),(6,1 / 4)
\end{array}
$$

c) $h(x)=\frac{x}{x^{2}+1}$

y-Intercept:	$(0,0)$
x-Intercept:	$(0,0)$
Vertical asymptote:	none
Horizontal asymptote:	$y=0$
Additional points:	$(-2,-0.4),(-1,-1 / 2),(1,1 / 2)$

II. Slant Asymptotes (p. 344)

Pace: 10 minutes

- Add one more rule to the Rules for Asymptotes of a Rational Function from Section 4.1.
If $n=m+1$, then the graph of f has a slant asymptote at $y=q(x)$, where $q(x)$ is the quotient obtained from the division algorithm.

Example 2. Sketch the graph of $y=\frac{x^{2}}{x-2}=x+2+\frac{4}{x-2}$

III. Application (p. 345)

Pace: 5 minutes
Example 3. The cost of producing x units is $C=0.25 x^{2}+5 x+78$. The average cost per unit is

$$
\bar{C}=\frac{0.25 x^{2}+5 x+78}{x}=0.25 x+5+\frac{78}{x}
$$

Find the number of units that should be produced to minimize the average cost. Graph this function on a graphing utility, then use the "minimum" command. $x \approx 17.66$

- Assign the Writing About Mathematics on page 345 of the text.

