Chapter 4 Rational Functions and Conics

Section 4.1 Rational Functions and Asymptotes

Section Objectives: Students will know how to determine the domains and find the asymptotes of rational functions
I. Introduction (p. 332)

Pace: 5 minutes

- State the following definition.

A rational function is a function of the form $f(x)=N(x) / D(x)$, where N and D are both polynomials. The domain of f is all x such that $D(x) \neq 0$.

Example 1. Find the domain of $f(x)=\frac{2 x+1}{x^{2}-4}$.

$$
\begin{aligned}
x^{2}-4 & =0 \\
(x+2)(x-2) & =0 \\
x+2 & =0 \Rightarrow x=-2 \\
x-2 & =0 \Rightarrow x=2
\end{aligned}
$$

The domain is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
II. Horizontal and Vertical Asymptotes (pp. 333-334)

Pace: 15 minutes

- Use the graph of $y=\frac{2 x-5}{x-2}$ to discuss vertical and horizontal asymptotes.
- State the following definitions of asymptotes.

1. The line $x=a$ is a vertical asymptote of the graph of f if $f(x) \rightarrow \pm \infty$ as $x \rightarrow a$, either from the right or from the left.
2. The line $y=b$ is a horizontal asymptote of the graph of f if $f(x) \rightarrow b$ as $x \rightarrow \pm \infty$.

- State the following Rules for Asymptotes of Rational Functions.

Let f be a rational function given by

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}} .
$$

1. The graph of f has a vertical asymptote at $x=a$ if $D(a)=0$ and $N(a) \neq 0$.
2. The graph of f has one horizontal asymptote or no horizontal asymptote, depending on the degree of N and D.
a. If $n<m$, then $y=0$ is the horizontal asymptote of the graph of f.
b. If $n=m$, then $y=a_{n} / b_{m}$ is the horizontal asymptote of the graph of f.
c. If $n>m$, then there is no horizontal asymptote of the graph of f.

Example 2. Find any horizontal and vertical asymptotes of the following.
a) $f(x)=\frac{x+1}{x^{2}-1}$

The horizontal asymptote is $y=0$. The only vertical asymptote is $x=1$. There will be a hole in the graph at $x=-1$.

b) $g(x)=\frac{2 x+5}{4 x-6}$. The horizontal asymptote is at $y=1 / 2$, and the vertical asymptote is at $x=3 / 2$.

c) $h(x)=\frac{x^{2}}{x+1}$. No horizontal asymptote and a vertical asymptote at $x=-1$.

III. Applications (p. 335-336)

Pace: 5 minutes
Example 3. A game commission has determined that if 500 deer are introduced into a preserve, the population at any time t (in months) is given by

$$
N=\frac{500+350 t}{1+0.2 t}
$$

What is the carrying capacity of the preserve?

The carrying capacity will be equal to the y-value of the horizontal asymptote, $y=1750$.

