Chapter 3 Polynomial Functions

Section 3.5 Mathematical Modeling

Section Objectives: Students will know how to write mathematical models for direct, inverse, and joint variation. In addition, students will know how to use the least squares regression feature of a graphing utility to find mathematical models for actual data.
I. Introduction (p. 308)

Pace: 5 minutes

- State that in Section 2.1 we learned how to fit a linear equation to two data points. In this section we expand on this idea.

Example 1. The chart below gives the profit for a company for the years 1990 to 1999, where 0 corresponds to 1990 and the profit is in millions of dollars.

Year	0	1	2	3	4	5	6	7	8	9
Profit	5.1	5.22	5.44	5.56	5.8	5.99	6.22	6.68	6.6	6.77

The company feels that the data can modeled by

$$
y=0.2 x+5
$$

Make a scatter plot of the data and graph the line. Is this a good model for the data? Yes
II. Direct Variation (p. 309)

Pace: 5 minutes

- State the definition of direct variation by stating the following equivalent statements:

1. y varies directly as x.
2. y is directly proportional to x.
3. $y=k x$ for some nonzero constant k, called the constant of variation or the constant of proportionality.

Example 2. y varies directly as x. $y=15$ when $x=3$. Find a mathematical model that gives y in terms of x.

$$
\begin{aligned}
y & =k x \\
15 & =k \cdot 3 \\
5 & =k \\
y & =5 x
\end{aligned}
$$

III. Direct Variation as an \boldsymbol{n} th Power (p. 310)
minutes

- State the definition of direct variation as an \boldsymbol{n} th power by stating the
following equivalent statements:

1. y varies directly as the \boldsymbol{n} th power of x.
2. y is directly proportional to the \boldsymbol{n} th power of x.
3. $y=k x^{n}$ for some nonzero constant k.

Example 3. The area of a circle is directly proportional to the square of its diameter. Find a mathematical model that gives the area of a circle in terms of its diameter if the area is 16π when the diameter is 8 .

$$
\begin{array}{rlrl}
A & =k d^{2} & \frac{\pi}{4} & =k \\
16 \pi & =k \cdot 8^{2} & A & =\frac{\pi}{4} d^{2}
\end{array}
$$

- State the definition of inverse variation by stating the following equivalent statements:

1. y varies inversely as the \boldsymbol{n} th power of x.
2. y is inversely proportional to the nth power of x.
3. $y=k / x^{n}$ for some nonzero constant k.

Example 4. y varies inversely as the cube of $x . y=54$ when $x=3$. Find y when $x=2$.

$$
\begin{aligned}
y & =k / x^{3} \\
54 & =k / 3^{3} \\
54 & =k / 27 \\
1458 & =k \\
y & =1548 / x^{3} \\
y & =1548 /\left(2^{3}\right)=182.25
\end{aligned}
$$

V. Joint Variation (p. 312)

Pace: 5 minutes

- State the definition of joint variation by stating the following equivalent statements:

1. $\quad z$ varies jointly as the nth power of x and the m th power of y.
2. z is jointly proportional to the nth power of x and the m th power of y.
3. $y=k x^{n} y^{m}$ for some nonzero constant k.

Example 5. The volume of a right circular cylinder is jointly proportional to its height and to the square of its diameter. If the volume is $320 \pi \mathrm{~cm}^{3}$ when the diameter is 16 cm and the height is 5 cm , what is the volume when the diameter is 10 cm and the height is 4 cm ?

$$
\begin{aligned}
V & =k d^{2} h \\
320 \pi & =k \cdot 16^{2} \cdot 5 \\
320 \pi & =1280 k \\
\frac{\pi}{4} & =k \\
V & =\frac{\pi}{4} \cdot 10^{2} \cdot 4=100 \pi
\end{aligned}
$$

VI. Least Squares Regression and Graphing Utilities (p. 313)

Pace: 5 minutes

- Discuss the least squares regression line. Say that you have a set of data points and you want the best-fitting line for the data. The deviation is the difference between the y-value of a point and the corresponding y-value of the line of best fit. Statisticians then minimize the sum of the squared deviations.
- When you run a linear regression program, the " r-value" or correlation coefficient gives a measure of how well the model fits the data. The closer $|r|$ is to 1 , the better the fit.

Example 5. Take the data from Example 1 and use a graphing utility to find the least squares regression line for the data.

$$
y=0.2 x+5.036
$$

