Chapter 1 Equations and Inequalities

Section 1.8 Other Types of Inequalities

Course/Section
Lesson Number
Date

Section Objectives: Students will know how to solve polynomial inequalities and rational inequalities.
I. Polynomial Inequalities (pp. 151-154)

Pace: 15 minutes

- Graph a polynomial such as $y=x^{2}+x-6$ using a graphing utility. Explain that there are no sign changes between consecutive zeros of the polynomial. Hence, to solve a polynomial inequality, we need to find the zeros of the polynomial, called the critical numbers of the polynomial, use them to create test intervals, and test a number from each test interval in the original inequality.

Example 1. Solve the following inequalities.
a) $x^{2}+x-6>0$ $(x+3)(x-2)>0$ The critical numbers are -3 and 2 .

Interval	$(-\infty,-3)$	$(-3,2)$	$(2, \infty)$
x-value	-4	0	3
Result	$6>0$	$-6>0$ No	$6>0$

The solution set is $(-\infty,-3) \cup(2, \infty)$.
b)

$$
\begin{aligned}
x^{3}-4 x^{2}-x & \leq-4 \\
x^{3}-4 x^{2}-x+4 & \leq 0 \\
(x+1)(x-1)(x-4) & \leq 0
\end{aligned}
$$

The critical numbers are $1,-1$, and 4 .

Interval	$(-\infty,-1)$	$(-1,1)$	$(1,4)$	$(4, \infty)$
x-value	-2	0	2	5
Result	$-22 \leq-4$	$0 \leq-4$ No	$-10 \leq-4$	$20 \leq-4$ No

The solution set is $(-\infty,-1] \cup[1,4]$.

Tip: You can check these solutions by graphing the polynomial with a graphing utility. While using the graphing utility, you might want to find the unusual solution sets obtained by solving the following inequalities.
a) $x^{2}+4 x+1>0$
b) $x^{2}-4 x+1 \geq 0$
c) $x^{2}+2 x+1 \leq 0$
d) $x^{2}+2 x+1>0$

- Explain that the concepts of critical numbers and test intervals can be extended to rational inequalities with one exception: a rational expression can also change signs at its undefined values. Therefore, there are two types of critical numbers for rational inequalities.

Example 2. Solve.

$$
\begin{aligned}
\frac{2}{x-1} & \geq-1 \\
\frac{2}{x-1}+\frac{x-1}{x-1} & \geq 0 \\
\frac{x+1}{x-1} & \geq 0
\end{aligned}
$$

Interval	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
x-value	-2	0	2
Result	$1 / 3 \geq 0$	$-1 \geq 0$ No	$3 \geq 0$

The solution set is $(-\infty,-1] \cup(1, \infty)$.
III. Applications (pp. 156-157) Pace: 5 minutes

Example 3. The path of a projectile, fired upward from ground level with an initial velocity of 352 feet per second, can be modeled by the equation

$$
h=-16 t^{2}+352 t
$$

where h is the height of the projectile in feet and t is time in seconds. During which interval of time is the projectile higher than 1600 feet?

$$
\text { Equation: } \begin{aligned}
-16 t^{2}+352 t & >1600 \\
t^{2}-22 t & <-100 \\
t^{2}-22 t+100 & <0
\end{aligned}
$$

Use the Quadratic Formula to solve for t with $a=1, b=-22, c=100$.
By the Quadratic Formula, $t=11 \pm 4.58=15.58$ or 6.42 .
Therefore, the projectile is higher than 1600 feet between 6.42 and 15.48 seconds.

