Chapter 1 Equations and Inequalities

Section 1.8 Other Types of Inequalities

Section Objectives: Students will know how to solve polynomial inequalities and rational inequalities.

- I. Polynomial Inequalities (pp. 151-154)
- Graph a polynomial such as $y = x^2 + x 6$ using a graphing utility. Explain that there are no sign changes between consecutive zeros of the polynomial. Hence, to solve a polynomial inequality, we need to find the zeros of the polynomial, called the **critical numbers** of the polynomial, use them to create test intervals, and test a number from each test interval in the original inequality.

Example 1.	Solve t	ne following	inequalities.
------------	---------	--------------	---------------

a) $x^2 + x - 6 > 0$ (x +3)(x -2) > 0 The critical numbers are -3 and 2.					
Interval	(-∞, -3)	(-3, 2)	(2,∞)		
x-value	-4	0	3		
Result	6 > 0	-6 > 0 No	6 > 0		

The solution set is $(-\infty, -3) \cup (2, \infty)$.

b) $x^{3} - 4x^{2} - x \le -4$ $x^{3} - 4x^{2} - x + 4 \le 0$ $(x + 1)(x - 1)(x - 4) \le 0$

The critical numbers are 1, -1, and 4.

Interval	(-∞, -1)	(-1, 1)	(1, 4)	(4,∞)
x-value	-2	0	2	5
Result	<i>-</i> 22 ≤ <i>-</i> 4	0 ≤ -4 No	- 10 ≤ - 4	20 ≤ -4 No

The solution set is $(-\infty, -1] \cup [1, 4]$.

Tip: You can check these solutions by graphing the polynomial with a graphing utility. While using the graphing utility, you might want to find the unusual solution sets obtained by solving the following inequalities.

a)
$$x^{2} + 4x + 1 > 0$$

b) $x^{2} - 4x + 1 \ge 0$
c) $x^{2} + 2x + 1 \le 0$
d) $x^{2} + 2x + 1 > 0$

Pace: 15 minutes

II. Rational Inequalities (p. 155)

• Explain that the concepts of critical numbers and test intervals can be extended to rational inequalities with one exception: a rational expression can also change signs at its undefined values. Therefore, there are two types of critical numbers for rational inequalities.

Example 2. Solve.

$$\frac{2}{x-1} \ge -1$$

$$\frac{2}{x-1} + \frac{x-1}{x-1} \ge 0$$

$$\frac{x+1}{x-1} \ge 0$$

Interval	(-∞, -1)	(-1, 1)	(1,∞)
x-value	-2	0	2
Result	$1/3 \ge 0$	-1 ≥ 0 No	3 ≥ 0

The solution set is $(-\infty, -1] \cup (1, \infty)$.

III. Applications (pp. 156-157)

Pace: 5 minutes

Example 3. The path of a projectile, fired upward from ground level with an initial velocity of 352 feet per second, can be modeled by the equation

$$h = -16t^2 + 352t$$

where *h* is the height of the projectile in feet and *t* is time in seconds. During which interval of time is the projectile higher than 1600 feet?

Equation: $-16t^2 + 352t > 1600$ $t^2 - 22t < -100$ $t^2 - 22t + 100 < 0$

Use the Quadratic Formula to solve for *t* with a = 1, b = -22, c = 100. By the Quadratic Formula, $t = 11 \pm 4.58 = 15.58$ or 6.42. Therefore, the projectile is higher than 1600 feet between 6.42 and 15.48 seconds.