Section 1.7 Linear Inequalities in One VariableCourse NumberObjective: In this lesson you learned how to solve linear inequalities
and inequalities involving absolute value.InstructorImportant VocabularyDefine each term or concept.Solution of an inequality A value of the variable for which the inequality true.Graph of an inequality The set of all points on the real number line that represent
the solution set of an inequality.Linear inequality in one variable An inequality in one variable (usually x) that
can be written in the form ax + b < 0 or ax + b > 0, where a and b are real numbers
with $a \neq 0$.Double inequality An inequality that represents two inequalities.

I. Introduction to Inequalities (Page 144)

Solving an inequality in the variable x means . . . finding all the values of x for which the inequality is true.

Such values are solutions and are said to <u>satisfy</u> the inequality.

Example 1: (a) Write the inequality as an interval and state whether it is bounded or unbounded: $x \le -16$.

- (b) Decide whether the interval [4, 12) is bounded or unbounded and then write it as an inequality.
- (a) $(-\infty, -16]$, unbounded
- (b) bounded, $4 \le x < 12$

II. Properties of Inequalities (Page 145)

To solve a linear inequality in one variable, use the <u>properties</u> <u>of inequalities</u> to isolate the variable.

When each side of an inequality is multiplied or divided by a negative number, . . . the direction of the inequality symbol must be reversed.

What you should learn How to represent solutions of linear inequalities in one variable Two inequalities that have the same solution set are

equivalent

Complete the list of Properties of Inequalities given below.

- 1) Transitive Property: a < b and $b < c \rightarrow \underline{a < c}$
- 2) Addition of Inequalities: a < b and $c < d \rightarrow \underline{a + c < b + d}$
- 3) Addition of a Constant *c*: $a < b \rightarrow \underline{a + c < b + c}$
- 4) Multiplication by a Constant *c*:

For c > 0, $a < b \rightarrow \underline{ac < bc}$ For c < 0, $a < b \rightarrow \underline{ac > bc}$

III. Solving a Linear Inequality in One Variable (Pages 146–147)

Describe the steps that would be necessary to solve the linear inequality 7x - 2 < 9x + 8.

Add 2 to each side. Subtract 9x from each side, and combine like terms. Divide each side by -2 and reverse the inequality. Write the solution set as an interval.

The two inequalities -10 < 3x and $14 \ge 3x$ can be rewritten as the double inequality $-10 < 3x \le 14$.

IV. Inequalities Involving Absolute Value (Page 148)

Let x be a variable or an algebraic expression and let a be a real number such that $a \ge 0$. The solutions of |x| < a are all values of x that <u>lie between - a and a</u>. The solutions of |x| > a are all values of x that <u>are less than - a or greater</u> than a.

Example 2: Solve the inequality: $|x+11| - 4 \le 0$ [-15, -7] *What you should learn* How to solve linear inequalities in one variable

What you should learn How to solve inequalities involving absolute values The symbol \cup is called a <u>union</u> symbol and is used to denote <u>the combining of two sets</u>.

Example 3: Write the following solution set using interval notation: x > 8 or x < 2 $(-\infty, 2) \cup (8, \infty)$

V. Applications of Linear Inequalities (Page 149)

Describe a real-life situation that involves a linear inequality.

Answers will vary.

Describe a real-life problem that could be solved using an absolute value inequality.

Answers will vary.

Additional notes

What you should learn How to use inequalities to model and solve reallife problems

Larson/Hostetler Algebra and Trigonometry Notetaking Guide, Seventh Edition IAE Copyright © Houghton Mifflin Company. All rights reserved.

Additional notes

Homework Assignment Page(s) Exercises