Section 1.5 Complex Numbers

Objective: In this lesson you learned how to perform operations with complex numbers.

Important Vocabulary Define each te

Define each term or concept.

Complex number If *a* and *b* are real numbers, the number a + bi, where the number *a* is called the real part and the number *bi* is called the imaginary part, is a complex number written in standard form. **Imaginary number** If $b \neq 0$, the number a + bi is called an imaginary number.

Complex conjugates A pair of complex numbers of the form a + bi and a - bi.

I. The Imaginary Unit *i* (Page 126)

Mathematicians created an expanded system of numbers using the **imaginary unit** *i*, defined as $i = \sqrt{-1}$, because . . . there is no real number *x* that can be squared to produce -1.

By definition, $i^2 = -1$.

If *a* and b are real numbers, then the complex number a + bi is said to be written in <u>standard form</u>. If b = 0, the number a + bi = a is a(n) <u>real number</u>. If $b \neq 0$, the number a + bi is a(n) <u>imaginary number</u>. If a = 0, the number a + bi = bi, where $b \neq 0$, is a(n) <u>pure imaginary number</u>.

The set of complex numbers consists of the set of <u>real</u> <u>numbers</u> and the set of <u>imaginary numbers</u>. Two complex numbers a + bi and c + di, written in standard form, are equal to each other if . . . and only if a = c and b = d.

II. Operations with Complex Numbers (Pages 127–128)

To add two complex numbers, . . . add the real parts and the imaginary parts of the numbers separately.

What you should learn How to add, subtract, and multiply complex numbers

What you should learn How to use the imaginary unit *i* to write complex numbers

Course Number

Instructor Date To subtract two complex numbers, ... subtract the real parts and the imaginary parts of the numbers separately.

The **additive identity** in the complex number system is 0.

The **additive inverse** of the complex number a + bi is

-(a+bi) = -a-bi

Example 1: Perform the operations: (5-6i) - (3-2i) + 4i2

To multiply two complex numbers a + bi and c + di, . . . use the multiplication rule (ac - bd) + (ad + bc)i or use the Distributive Property to multiply the two complex numbers, similar to using the FOIL method for multiplying two binomials.

Example 2: Multiply: (5-6i)(3-2i)3-28*i*

III. Complex Conjugates (Page 129)

The product of a pair of complex conjugates is a(n)

real number.

To write the quotient of the complex numbers a + bi and c + diin standard form, where c and d are not both zero, . . . multiply the numerator and denominator by the complex conjugate of the denominator.

Example 3: Divide (1 + i) by (2 - i). Write the result in standard form. 1/5 + 3/5i

IV. Complex Solutions of Quadratic Equations (Page 130)

If *a* is a positive number, the **principal square root** of the negative number – *a* is defined as $\sqrt{-a} = \sqrt{a} i$.

What you should learn How to use complex conjugates to write the quotient of two complex numbers in standard form

What you should learn How to find complex solutions of quadratic equations To avoid problems with square roots of negative numbers, be sure to convert complex numbers to <u>standard form</u> before multiplying.

Example 4: Perform the operation and write the result in standard form: $(5 - \sqrt{-4})^2$ 21 - 20*i*

Additional notes

Larson/Hostetler Algebra and Trigonometry Notetaking Guide, Seventh Edition IAE Copyright © Houghton Mifflin Company. All rights reserved.

Additional notes

Larson/Hostetler Algebra and Trigonometry Notetaking Guide, Seventh Edition IAE Copyright © Houghton Mifflin Company. All rights reserved.