Chapter 1 Equations and Inequalities

Section 1.3 Modeling with Linear Equations

Section Objectives: Students will know how to create verbal models and apply techniques for solving linear equations to real-life applications.

- I. Introduction to Problem Solving (pp. 97-98)
- The process of translating a phrase or sentence into an algebraic expression is called **mathematical modeling**. It is, therefore, very important to know which words translate into which operations. A list of these translations can be found on page 98.
- II. Using Mathematical Models (pp. 98-100) Pace: 15 minutes

Example 1. A shirt that normally sells for \$30 is marked down \$6. What percent of the original price is this markdown?

Verbal Model:	Markdown = Percent • Original
Labels:	Original = 30 (dollars) Markdown = 6 (dollars) Percent = r (in decimal form)

Equation:

$$6 = r \cdot 30$$
$$\frac{6}{30} = r$$
$$0.2 = r$$

The shirt was marked down 20%.

Example 2. The length of a rectangular lot is 8 feet longer than the width. The perimeter of the lot is 240 feet. What are the dimensions of the lot?

4w = 224w = 56

Verbal Model:	$2 \cdot \text{Length} + 2 \cdot \text{Width} = \text{Perimeter}$
Labels:	Perimeter = 240 (feet) Width = w (feet) Length = $w + 8$ (feet)
Equation:	2(w+8)+2w=240
	4w + 16 = 240

The width is 56 feet and length is 64 feet.

Pace: 5 minutes

Example 3. If you average 65 mph, how long will it take you to drive 280 miles?

Verbal Model:	Distance = Rate • Time
Labels:	Distance = 280 (miles) Rate = 65 (miles per hour) Time = t (hours)
Equation:	280 = 65t
	$\frac{280}{65} = t$
	$4.3 \approx t$

It will take about 4.3 hours.

Example 4. A man 6 feet tall is walking away from a tree. He remains in the shadow of the tree until he is 8 feet from the tip of the tree's shadow. If he is 20 feet from the tree at this point, how tall is the tree?

Verbal N	<i>Model:</i> height of tree	length of tree's shadow
	height of man	length of man's shadow
Labels:		Height of tree = x (feet) Height of man = 6 (feet) Length of tree's shadow = 28 (feet) Length of man's shadow = 8 (feet)
Equation	n:	$\frac{x}{6} = \frac{28}{8}$ $x = 21$

The tree is 21 feet tall.

III. Mixture Problems (p. 101)

• There are two types of mixture problems: solution and value. In addition, there are several other types of problems that are solved just as mixture problems are solved.

Example 5. How many ounces of 10% alcohol solution must be mixed with 10 ounces of 16% alcohol solution to make a solution that is 12.4% alcohol?

Verbal Model:	Alcohol in 10% + alcohol in 16% = alcohol in 12.4%
Labels:	Alcohol in $10\% = 0.10x$ (ounces) Alcohol in $16\% = 0.16(10) = 1.6$ (ounces) Alcohol in $12.4\% = 0.124(10 + x)$ (ounces)
Equation:	
	0.10x + 1.6 = 0.124(10 + x)
	0 10x + 16 = 124 + 0124x

$$0.10x + 1.6 = 1.24 + 0.12$$

-0.024x + 1.6 = 1.24
-0.024x = -0.36
x = 15

Alcohol in 10% solution = 0.10x = 0.10(15) = 1.5, so 1.5 ounces of the 10% alcohol solution are needed.

Example 6. How many pounds of peanuts costing \$2 per pound must be mixed with 2 pounds of walnuts costing \$3 per pound to make a mixture that will cost \$2.40 per pound?

Verbal Model:	Value of peanuts + value of walnuts = value of mixture
Labels:	Value of peanuts = $2x$ (dollars) Value of walnuts = $3 \cdot 2 = 6$ (dollars) Value of mixture = $2.40(2 + x)$ (dollars)
Equation:	
-	2x + 6 = 2.40(2 + x)
	2x + 6 = 4.80 + 2.40x
	-0.40x = -1.20

$$x = 3$$

Three pound of peanuts are needed.

IV. Common Formulas (pp. 102-103)

• Attention should be drawn to the list of formulas on page 102 of the text.

Example 7. A rectangular box with a square base has a volume of 128 cubic inches. If the length of one side of the base is 8 inches, what is the height of the box?

$$V = lwh$$

$$128 = 8 \cdot 8 \cdot h$$

$$128 = 64h$$

$$2 = h$$

Therefore the height is 2 inches.