Chapter 9, Part B
 Hypothesis Testing

$>$ Population Proportion
$>\square$ Hypothesis Testing and Decision Making

- Calculating the Probability of Type II Errors
$>\square$ Determining the Sample Size for a
Hypothesis Test About a Population Mean

A Summary of Forms for Null and Alternative Hypotheses About a Population Proportion

- The equality part of the hypotheses always appears in the null hypothesis.
$>$ In general, a hypothesis test about the value of a population proportion p must take one of the following three forms (where p_{0} is the hypothesized value of the population proportion).

$H_{0}: p \geq p_{0}$ $H_{\mathrm{a}}: p<p_{0}$	$H_{0}: p \leq p_{0}$ $H_{\mathrm{a}}: p>p_{0}$	$H_{0}: p=p_{0}$ $H_{\mathrm{a}}: p \neq p_{0}$
One-tailed (lower tail)	One-tailed (upper tail)	Two-tailed

Tests About a Population Proportion

- Test Statistic

$$
z=\frac{\bar{p}-p_{0}}{\sigma_{\bar{p}}}
$$

where:

$$
\rangle \sigma_{\bar{p}}=\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}
$$

assuming $n p \geq 5$ and $n(1-p) \geq 5$

Two-Tailed Test About a
 Population Proportion

- Example: National Safety Council (NSC)
> For a Christmas and New Year's week, the National Safety Council estimated that 500 people would be killed and 25,000 injured on the nation's roads. The NSC claimed that 50% of the accidents would be caused by drunk driving.

A sample of 120 accidents showed that 67 were caused by drunk driving. Use these data to test the NSC's claim with $\alpha=.05$.

Tests About a Population Proportion

Rejection Rule: p-Value Approach

$$
\text { Reject } H_{0} \text { if } p \text {-value } \leq \alpha
$$

- Rejection Rule: Critical Value Approach
$>H_{0}: p \leq p_{0}$ Reject H_{0} if $z \geq z_{\alpha}$
$H_{0}: p \geq p_{0}$ Reject H_{0} if $z \leq-z_{\alpha}$
$>H_{0}: p=p_{0}$ Reject H_{0} if $z \leq-z_{\alpha / 2}$ or $z \geq z_{\alpha / 2}$

Two-Tailed Test About a Population Proportion

- p-Value and Critical Value Approaches

1 . Determine the hypotheses. $\begin{aligned} & H_{0}: p=.5 \\ & H_{a}: p \neq .5\end{aligned}$
2. Specify the level of significance. $\alpha=.05$
3. Compute the value of the test statistic.

Two-Tailed Test About a
 Population Proportion

- p-Value Approach

4. Compute the p-value.

For $z=1.28$, cumulative probability $=.8997$

$$
p \text {-value }=2(1-.8997)=.2006
$$

5. Determine whether to reject H_{0}.

Because p-value $=.2006>\alpha=.05$, we cannot reject H_{0}.

Two-Tailed Test About a
 Population Proportion

- Critical Value Approach4. Determine the criticals value and rejection rule.

For $\alpha / 2=.05 / 2=.025, z_{.025}=1.96$
Reject H_{0} if $z \leq-1.96$ or $z \geq 1.96$
5. Determine whether to reject H_{0}.

Because $1.278>-1.96$ and <1.96, we cannot reject H_{0}.

Hypothesis Testing and Decision Making
$>$. Thus far, we have illustrated hypothesis testing applications referred to as significance tests.
$>$ In the tests, we compared the p-value to a controlled probability of a Type I error, α, which is called the level of significance for the test.
$>\quad$ With a significance test, we control the probability of making the Type I error, but not the Type II error.
$>$ - We recommended the conclusion "do not reject $H_{0}{ }^{\text {" }}$ rather than "accept H_{0} " because the latter puts us at risk of making a Type II error.

Hypothesis Testing and Decision Making

- With the conclusion "do not reject H_{0} ", the statistical evidence is considered inconclusive.
$>$ Usually this is an indication to postpone a decision until further research and testing is undertaken.
$>$ In many decision-making situations the decision maker may want, and in some cases may be forced, to take action with both the conclusion " do not reject H_{0} " and the conclusion "reject H_{0}."
$>\square$ In such situations, it is recommended that the hypothesis-testing procedure be extended to include consideration of making a Type II error.

Calculating the Probability of a Type II Error in Hypothesis Tests About a Population Mean
$>$ 1. Formulate the null and alternative hypotheses.
>2. Use the level of significance α and the critical value approach to determine the critical value and the rejection rule for the test.
>3. Use the rejection rule to solve for the value of the sample mean corresponding to the critical value of the test statistic.

Calculating the Probability of a Type II Error in Hypothesis Tests About a Population Mean
> 4. Use the results from step 3 to state the values of the sample mean that lead to the acceptance of H_{0}; this defines the acceptance region.
>5. Using the sampling distribution of \bar{x} for a value of μ satisfying the alternative hypothesis, and the acceptance region from step 4, compute the probability that the sample mean will be in the acceptance region. (This is the probability of making a Type II error at the chosen level of μ.)

Calculating the Probability of a Type II Error

Example: Metro EMS (revisited)
Recall that the response times for a random sample of 40 medical emergencies were tabulated. The sample mean is 13.25 minutes. The population standard deviation is believed to be 3.2 minutes.

The EMS director wants to perform a hypothesis test, with a .05 level of significance, to determine whether or not the service goal of 12 minutes or less is being achieved.

Calculating the Probability

of a Type II Error

1. Hypotheses are: $H_{0}: \mu \leq 12$ and $H_{\mathrm{a}}: \mu>12$
$>$ 2. Rejection rule is: Reject H_{0} if $z \geq 1.645$
>3. Value of the sample mean that identifies the rejection region:

$$
\begin{gathered}
z=\frac{\bar{x}-12}{3.2 / \sqrt{40}} \geq 1.645 \\
\bar{x} \geq 12+1.645\left(\frac{3.2}{\sqrt{40}}\right)=12.8323
\end{gathered}
$$

4. We will accept H_{0} when $\bar{x}<12.8323$

Calculating the Probability
of a Type II Error
$>$ 5. Probabilities that the sample mean will be in the acceptance region:

Values of μ	$z=\frac{12.8323-\mu}{3.2 / \sqrt{40}}$		
14.0	-2.31	.0104	.9896
13.6	-1.52	.0643	.9357
13.2	-0.73	.2327	.7673
12.8323	0.00	.5000	.5000
12.8	0.06	.5239	.4761
12.4	0.85	.8023	.1977
12.0001	1.645	.9500	.0500

Calculating the Probability

of a Type II Error

- Calculating the Probability of a Type II Error Observations about the preceding table:
$>$ - When the true population mean μ is close to the null hypothesis value of 12 , there is a high probability that we will make a Type II error.

$$
\text { Example: } \mu=12.0001, \beta=.9500
$$

$>$ - When the true population mean μ is far above the null hypothesis value of 12 , there is a low probability that we will make a Type II error.

$$
\text { Example: } \mu=14.0, \beta=.0104
$$

Power of the Test

$>$ - The probability of correctly rejecting H_{0} when it is false is called the power of the test.
$>\square$ For any particular value of μ, the power is $1-\beta$.
$>-$ We can show graphically the power associated with each value of μ; such a graph is called a power curve. (See next slide.)

Power Curve

Determining the Sample Size for a Hypothesis Test About a Population Mean
$>\square$ The specified level of significance determines the probability of making a Type I error.
$>\square$ By controlling the sample size, the probability of making a Type II error is controlled.

Determining the Sample Size for a Hypothesis Test About a Population Mean

Determining the Sample Size for a Hypothesis Test About a Population Mean
$>$ Let's assume that the director of medical services makes the following statements about the allowable probabilities for the Type I and Type II errors:
$>$ - If the mean response time is $\mu=12$ minutes, I am willing to risk an $\alpha=.05$ probability of rejecting H_{0}.
$>$ - If the mean response time is 0.75 minutes over the specification ($\mu=12.75$), I am willing to risk a $\beta=.10$ probability of not rejecting H_{0}.

Determining the Sample Size for a Hypothesis Test About a Population Mean

$$
\begin{aligned}
& \alpha=.05, \beta=.10 \\
& z_{\alpha}=1.645, z_{\beta}=1.28 \\
& \mu_{0}=12, \mu_{\mathrm{a}}=12.75 \\
& \sigma=3.2 \\
& \quad \geqslant n=\frac{\left(z_{\alpha}+z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{0}-\mu_{a}\right)^{2}}=\frac{(1.645+1.28)^{2}(3.2)^{2}}{(12-12.75)^{2}}=155.75 \approx 156
\end{aligned}
$$

Relationship Among α, β, and n

- Once two of the three values are known, the other can be computed.
- For a given level of significance α, increasing the sample size n will reduce β.
- For a given sample size n, decreasing α will increase β, whereas increasing α will decrease b.

End of Chapter 9, Part B

