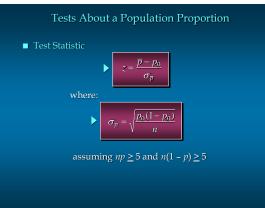
Chapter 9, Part B Hypothesis Testing

- ▶ Population Proportion
- ▶■ Hypothesis Testing and Decision Making
- ▶ Calculating the Probability of Type II Errors
- Determining the Sample Size for a Hypothesis Test About a Population Mean

A Summary of Forms for Null and Alternative Hypotheses About a Population Proportion

- ▶ The equality part of the hypotheses always appears in the null hypothesis.
- In general, a hypothesis test about the value of a population proportion *p* must take one of the following three forms (where *p*₀ is the hypothesized value of the population proportion).



Tests About a Population Proportion

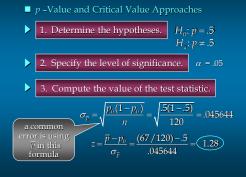
- ► Rejection Rule: p -Value Approach Reject H_0 if p -value $\leq \alpha$
- Rejection Rule: Critical Value Approach
 - $H_0: p \le p_0 \quad \text{Reject } H_0 \text{ if } z \ge z_\alpha$
 - $H_0: p \ge p_0 \quad \text{Reject } H_0 \text{ if } z \le -z_a$
 - $H_0: p = p_0 \quad \text{Reject } H_0 \text{ if } z \leq -z_{\alpha/2} \text{ or } z \geq z_{\alpha/2}$

Two-Tailed Test About a Population Proportion

- Example: National Safety Council (NSC)
- For a Christmas and New Year's week, the National Safety Council estimated that 500 people would be killed and 25,000 injured on the nation's roads. The NSC claimed that 50% of the accidents would be caused by drunk driving.

A sample of 120 accidents showed that 67 were caused by drunk driving. Use these data to test the NSC's claim with α = .05.

Two-Tailed Test About a Population Proportion



Two-Tailed Test About a Population Proportion

- *p*–Value Approach
- \blacktriangleright 4. Compute the *p* -value.

For *z* = 1.28, cumulative probability = .8997 *p*-value = 2(1 – .8997) = .2006

 \triangleright 5. Determine whether to reject H_0 .

Because *p*-value = .2006 > α = .05, we cannot reject H_0 .

Two-Tailed Test About a Population Proportion

- Critical Value Approach
- 4. Determine the criticals value and rejection rule.

For $\alpha/2 = .05/2 = .025$, $z_{.025} = 1.96$ Reject H₂ if $z \le 1.96$ or $z \ge 1.96$

 \triangleright 5. Determine whether to reject H_0 .

Because 1.278 > -1.96 and < 1.96, we cannot reject H_0 .

Hypothesis Testing and Decision Making

- ▶ Thus far, we have illustrated hypothesis testing applications referred to as significance tests.
- In the tests, we compared the *p*-value to a controlled probability of a Type I error, α, which is called the level of significance for the test.
- With a significance test, we control the probability of making the Type I error, but not the Type II error.
- We recommended the conclusion "do not reject H₀" rather than "accept H₀" because the latter puts us at risk of making a Type II error.

Hypothesis Testing and Decision Making

- ▶ With the conclusion "do not reject *H*₀", the statistical evidence is considered inconclusive.
- Usually this is an indication to postpone a decision until further research and testing is undertaken.
- In many decision-making situations the decision maker may want, and in some cases may be forced, to take action with both the conclusion "do not reject H₀" and the conclusion "reject H₀."
- In such situations, it is recommended that the hypothesis-testing procedure be extended to include consideration of making a Type II error.

Calculating the Probability of a Type II Error in Hypothesis Tests About a Population Mean

- Formulate the null and alternative hypotheses.
- 2. Use the level of significance α and the critical value approach to determine the critical value and the rejection rule for the test.
- 3. Use the rejection rule to solve for the value of the sample mean corresponding to the critical value of the test statistic.

Calculating the Probability of a Type II Error in Hypothesis Tests About a Population Mean

- 4. Use the results from step 3 to state the values of the sample mean that lead to the acceptance of H₀; this defines the acceptance region.
- 5. Using the sampling distribution of x̄ for a value of μ satisfying the alternative hypothesis, and the acceptance region from step 4, compute the probability that the sample mean will be in the acceptance region. (This is the probability of making a Type II error at the chosen level of μ.)

Calculating the Probability of a Type II Error

■ Example: Metro EMS (revisited)

Þ

Recall that the response times for a random sample of 40 medical emergencies were tabulated. The sample mean is 13,25 minutes. The population standard deviation is believed to be 3,2 minutes.

The EMS director wants to perform a hypothesis test, with a .05 level of significance, to determine whether or not the service goal of 12 minutes or less is being achieved.

Calculating the Probability of a Type II Error

- ▶ 1. Hypotheses are: H_0 : $\mu \le 12$ and H_a : $\mu > 12$
- > 2. Rejection rule is: Reject H_0 if $z \ge 1.645$
- 3. Value of the sample mean that identifies the rejection region:

$$z = \frac{\overline{x} - 12}{3.2 / \sqrt{40}} \ge 1.645$$

$$\overline{x} \ge 12 + 1.645 \left(\frac{3.2}{\sqrt{40}}\right) = 12.8323$$

▶ 4. We will accept H_0 when \overline{x} < 12.8323

Calculating the Probability of a Type II Error

^{5.} Probabilities that the sample mean will be in the acceptance region;

1 0			
¥7-1	$z = \frac{12.8323 - \mu}{12.8323 - \mu}$	0	1.0
Values of μ	3.2/√40	β	$1-\beta$
14.0	-2.31	.0104	.9896
13.6	-1.52	.0643	.9357
13.2	-0.73	.2327	.7673
12.8323	0.00	.5000	.5000
12.8	0.06	.5239	.4761
12.4	0.85	.8023	.1977
12.0001	1.645	.9500	.0500

Calculating the Probability of a Type II Error

- Calculating the Probability of a Type II Error Observations about the preceding table:
 - When the true population mean μ is close to the null hypothesis value of 12, there is a high probability that we will make a Type II error.

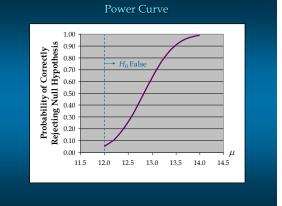
Example: $\mu = 12.0001$, $\beta = .9500$

• When the true population mean μ is far above the null hypothesis value of 12, there is a low probability that we will make a Type II error.

Example: $\mu = 14.0, \beta = .0104$

Power of the Test

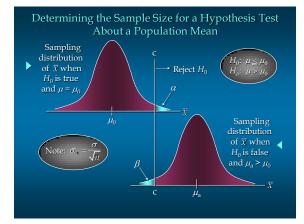
- ▶ The probability of correctly rejecting *H*₀ when it is false is called the <u>power</u> of the test.
- **•** For any particular value of μ , the power is 1β .
- We can show graphically the power associated with each value of µ, such a graph is called a <u>power curve</u>. (See next slide.)



3

Determining the Sample Size for a Hypothesis Test About a Population Mean

- The specified level of significance determines the probability of making a Type I error.
- By controlling the sample size, the probability of making a Type II error is controlled.



Determining the Sample Size for a Hypothesis Test About a Population Mean

$$h = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu_0 - \mu_a)^2}$$

where

 z_{α} = z value providing an area of α in the tail

- z_{β} = z value providing an area of β in the tail
- σ = population standard deviation
- μ_0 = value of the population mean in H_0
- $\mu_{\rm a}$ = value of the population mean used for the Type II error

Note: In a two-tailed hypothesis test, use $z_{\alpha/2}$ not z_{α}

Determining the Sample Size for a Hypothesis Test About a Population Mean

- Let's assume that the director of medical services makes the following statements about the allowable probabilities for the Type I and Type II errors:
 - If the mean response time is μ = 12 minutes, I am willing to risk an α = .05 probability of rejecting H₀
 - If the mean response time is 0.75 minutes over the specification (μ = 12.75), I am willing to risk a β = .10 probability of not rejecting H₀.

Determining the Sample Size for a Hypothesis Test About a Population Mean

$$\begin{array}{l} \alpha = .05, \ \beta = .10 \\ z_{\alpha} = 1.645, \ z_{\beta} = 1.28 \\ \mu_0 = 12, \ \mu_a = 12.75 \\ \sigma = 3.2 \end{array}$$

►
$$n = \frac{(z_n + z_n)^2 \sigma^2}{(\mu_0 - \mu_n)^2} = \frac{(1.645 + 1.28)^2 (3.2)^2}{(12 - 12.75)^2} = 155.75 \approx 156$$

Relationship Among α , β , and n

- Once two of the three values are known, the other can be computed.
- For a given level of significance α, increasing the sample size n will reduce β.
- For a given sample size *n*, decreasing α will increase β , whereas increasing α will decrease b.

