MS 100 College Algebra Spring 2006 Test Six

1. Calculate (expand): $\left(x-\frac{1}{2}-4 i\right)\left(x-\frac{1}{2}+4 i\right)$
$=x^{2}-x-16.25 i^{2}$
$=x^{2}-x+16.25$
2. For $\quad f(x)=x^{2}-x-15.75 \quad g(x) x+15.75$

Find the composition: $(g \circ f)(x)$
$=\left[x^{2}-x-15.75\right]+15.75$
$=x^{2}-x$
3. All about $f(x)=x^{2}-x-15.75 \ldots$

2
a. What is the degree of the function $f(x)=x^{2}-x-15.75$?
even
b. Is $f(x)=x^{2}-x-15.75$ an even or odd function?
$\frac{u p}{2}$
c. Does $f(x)=x^{2}-x-15.75$ open up or open down?
parabola
d. What is the maximum number of zeros for $f(x)=x^{2}-x-15.75$?
-15.75
e. What is the name of the shape produced by $f(x)=x^{2}-x-15.75$?
g. Solve $x^{2}-x-15.75=0$ by completing the square. Show your work.
$x^{2}-x=15.75$
$x^{2}-x+0.25=15.75+0.25$
$(x-0.5)^{2}=16$

$$
\sqrt{(x-0.5)^{2}}= \pm \sqrt{16}
$$

$x-0.5= \pm 4$
$x=0.5 \pm 4$
$x=-3.5, x=4$
h. Find the x-intercepts for $f(x)=x^{2}-x-15.75$
$x=-3.5, x=4$
i. Use the formula $(h, k)=\left(\frac{-b}{2 a}, \frac{\left(-b^{2}+4 a c\right)}{4 a}\right)$ to find the vertex (h, k) for
$y=x^{2}-x-15.75$
(h, k) $=(0.5,-16)$
j. Use the formula ($\mathrm{h}, \mathrm{k}+\mathrm{p}$) where $p=\frac{1}{4 \mathrm{a}}$ to find the focus for
$f(x)=x^{2}-x-15.75$
[0.5, -15.75]
k. Sketch a graph of $f(x)=x^{2}-x-15.75$:

4. Solve by completing the square $x^{2}-x+16.25=0$. Show your work.
$x^{2}-x=-16.25$
$x^{2}-x+0.25=-16.25+0.25$
$(x-0.5)^{2}=-16$
$\sqrt{(x-0.5)^{2}}= \pm \sqrt{-16}$
$\sqrt{(x-0.5)^{2}}= \pm \sqrt{16} * \sqrt{-1}$
$x-0.5= \pm 4 i$
$x=0.5 \pm 4 i$
$x=0.5+4 i, x=0.5-4 i$
Factors (not required, only done to show connection to problem one\}:
$[x-0.5-4 i][x-0.5+4 i]$ or
$\left(x-\frac{1}{2}-4 i\right)\left(x-\frac{1}{2}+4 i\right)$

